首页> 外文期刊>Biomechanics and Modeling in Mechanobiology >A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes
【24h】

A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes

机译:一种新颖的两层耦合有限元方法,用于建模人类红细胞的非线性弹性和粘弹性行为

获取原文
获取原文并翻译 | 示例
           

摘要

A novel finite element approach is presented to simulate the mechanical behavior of human red blood cells (RBC, erythrocytes). As the RBC membrane comprises a phospholipid bilayer with an intervening protein network, we propose to model the membrane with two distinct layers. The fairly complex characteristics of the very thin lipid bilayer are represented by special incompressible solid shell elements and an anisotropic viscoelastic constitutive model. Properties of the protein network are modeled with an isotropic hyperelastic third-order material. The elastic behavior of the model is validated with existing optical tweezers studies with quasi-static deformations. Employing material parameters consistent with literature, simulation results are in excellent agreement with experimental data. Available models in literature neglect either the surface area conservation of the RBC membrane or realistic loading conditions of the optical tweezers experiments. The importance of these modeling assumptions, that are both included in this study, are discussed and their influence quantified. For the simulation of the dynamic motion of RBC, the model is extended to incorporate the cytoplasm. This is realized with a monolithic fully coupled fluid-structure interaction simulation, where the fluid is described by the incompressible Navier–Stokes equations in an arbitrary Lagrangian Eulerian framework. It is shown that both membrane viscosity and cytoplasm viscosity have significant influence on simulation results. Characteristic recovery times and energy dissipation for varying strain rates in dynamic laser trap experiments are calculated for the first time and are found to be comparable with experimental data.
机译:提出了一种新颖的有限元方法来模拟人类红细胞(RBC,红细胞)的机械行为。由于RBC膜包含具有双层蛋白质网络的磷脂双层,因此我们建议对具有两个不同层的膜进行建模。非常薄的脂质双层的相当复杂的特征由特殊的不可压缩的固体壳单元和各向异性的粘弹性本构模型表示。蛋白质网络的特性是用各向同性的超弹性三阶材料建模的。该模型的弹性行为已通过现有的具有准静态变形的光镊研究进行了验证。利用与文献一致的材料参数,模拟结果与实验数据非常吻合。文献中可用的模型忽略了RBC膜的表面积守恒或光镊实验的实际负载条件。讨论了本研究中都包含的这些建模假设的重要性,并量化了它们的影响。为了模拟RBC的动态运动,该模型被扩展以包含细胞质。这是通过单块完全耦合的流固耦合仿真来实现的,其中流体由任意Lagrangian欧拉框架中的不可压缩Navier-Stokes方程描述。结果表明,膜粘度和细胞质粘度均对模拟结果有重要影响。首次计算了动态激光阱实验中不同应变速率下的特征恢复时间和能量耗散,发现与实验数据具有可比性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号