首页> 外文期刊>Big Data, IEEE Transactions on >Integrating Data and Model Space in Ensemble Learning by Visual Analytics
【24h】

Integrating Data and Model Space in Ensemble Learning by Visual Analytics

机译:通过视觉分析将数据和模型空间集成在集合学习中

获取原文
获取原文并翻译 | 示例

摘要

Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user can manipulate models and alternative combinations.
机译:分类器模型的集合通常提供卓越的性能,并且可以在手头上提供单个分类器模型。然而,性能的增益与缺乏可理解性,造成挑战,了解每个模型如何影响分类输出以及从错误来源的地方。我们提出了数据和模型空间的严格视觉集成,用于探索和组合分类器模型。我们介绍了一个在视觉集成时构建的交互式工作流程,并实现了对分类输出和模型的有效探索。用户的参与是我们方法的关键。因此,我们详细阐述了人类的作用,并将我们对人以人为本的机器学习的理论框架的影响。我们展示了我们方法的有用性以及通过二进制和多字符分类问题的用户集成。基于由标准集合选择算法自动选择的集合,用户可以操纵模型和替代组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号