首页> 外文期刊>Big Data, IEEE Transactions on >An Improved Secure High-Order-Lanczos Based Orthogonal Tensor SVD for Outsourced Cyber-Physical-Social Big Data Reduction
【24h】

An Improved Secure High-Order-Lanczos Based Orthogonal Tensor SVD for Outsourced Cyber-Physical-Social Big Data Reduction

机译:一种改进的安全高阶 - Lanczos基于外包的外包张力SVD,用于外包网络物理社会社会大数据减少

获取原文
获取原文并翻译 | 示例

摘要

Cyber-physical-social big data concern heterogeneous, multiaspect, large-volume data generated in cyber-physical-social systems (CPSS). Orthogonal tensor SVD (OTSVD) has emerged as a powerful tool to reduce cyber-physical-social big data. In this work, we propose an improved secure high-order-Lanczos based OTSVD for cyber-physical-social big data reduction in clouds. Specifically, to take advantage of the parallel processing capability of cloud computing, the improved secure high-order Lanczos algorithm is derived by restructuring the original high-order Lanczos algorithm such that only one synchronization point per iteration is required. To protect data privacy, the improved secure high-order-Lanczos based OTSVD employs homomorphic encryption integrated with batching technique, and garbled circuits, and makes all computations of the OTSVD algorithm in clouds come true. To our knowledge, this is the first study to efficiently tackle big data reduction in clouds in a privacy-preserving manner. Finally, we prove that our improved approach is secure in semi-trusted model. And we evaluate the proposed improved secure OTSVD on real datasets. The results show that our proposed improved secure approach is efficient and scalable for cyber-physical-social big data reduction.
机译:网络身体社会社会大数据关注在网络 - 物理社交系统(CPS)中产生的异构,多档,大批量数据。正交张量SVD(OTSVD)已成为减少网络物理社会大数据的强大工具。在这项工作中,我们提出了一种改进的安全高阶-LanczoS的大象,用于云的网络物理社会大数据减少。具体地,为了利用云计算的并行处理能力,通过重组原始高阶LanczoS算法来导出改进的安全高阶LanczoS算法,使得仅需要每个迭代的一个同步点。为了保护数据隐私,改进的安全高阶-LanczoS的ototsvd采用与批处理技术集成的同态加密,以及乱码的电路,使得云中的OTSVD算法的所有计算实现。为了我们的知识,这是第一次以隐私保存方式有效地解决云层的大数据减少的研究。最后,我们证明了我们的改进方法是在半信制的模型中得到安全的。我们评估了在实时数据集上的提出改进的安全OTSVD。结果表明,我们提出的改进的安全方法对于网络物理社会的大数据减少有效和可扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号