首页> 外文期刊>Big Data, IEEE Transactions on >Leveraging Structured Biological Knowledge for Counterfactual Inference: A Case Study of Viral Pathogenesis
【24h】

Leveraging Structured Biological Knowledge for Counterfactual Inference: A Case Study of Viral Pathogenesis

机译:利用结构化生物学知识进行反事实推断:病毒发病机制的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Counterfactual inference is a useful tool for comparing outcomes of interventions on complex systems. It requires us to represent the system in form of a structural causal model, complete with a causal diagram, probabilistic assumptions on exogenous variables, and functional assignments. Specifying such models can be extremely difficult in practice. The process requires substantial domain expertise, and does not scale easily to large systems, multiple systems, or novel system modifications. At the same time, many application domains, such as molecular biology, are rich in structured causal knowledge that is qualitative in nature. This article proposes a general approach for querying a causal biological knowledge graph, and converting the qualitative result into a quantitative structural causal model that can learn from data to answer the question. We demonstrate the feasibility, accuracy and versatility of this approach using two case studies in systems biology. The first demonstrates the appropriateness of the underlying assumptions and the accuracy of the results. The second demonstrates the versatility of the approach by querying a knowledge base for the molecular determinants of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm, and performing counterfactual inference to estimate the causal effect of medical countermeasures for severely ill patients.
机译:反事实推理是用于比较复杂系统上的干预措施的有用工具。它要求我们以结构因果模型的形式代表系统,完整的外源变量对外源变量的概率假设以及功能分配。在实践中指定此类模型可能非常困难。该过程需要大量的域专业知识,并且不容易扩大大型系统,多种系统或新颖的系统修改。与此同时,许多应用领域,如分子生物学,具有丰富的结构性因果知识,其性质上具有定性。本文提出了一种用于查询因果生物知识图的一般方法,并将定性结果转换为可以从数据中学习以回答问题的定量结构因果模型。我们展示了使用系统生物学的两种案例研究的这种方法的可行性,准确性和多功能性。第一个展示了潜在假设的适当性和结果的准确性。第二个通过查询严重急性呼吸综合征冠状病毒2(SARS-COV-2)的分子确定剂的知识基础来证明该方法的多功能性,并对细胞因子风暴进行了反事实推理,以估算医疗对策的因果效应患者严重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号