首页> 外文期刊>Behavior Research Methods >Analyzing individual differences in sentence processing performance using multilevel models
【24h】

Analyzing individual differences in sentence processing performance using multilevel models

机译:使用多层次模型分析句子处理性能中的个体差异

获取原文
获取原文并翻译 | 示例

摘要

The use of multilevel models is increasingly common in the behavioral sciences for analyzing hierarchically structured data, including repeated measures data. These models are flexible and easily implemented via a variety of commercially available statistical software programs. We consider their application in the context of an eye-movement experiment testing readers' responses to a semantic plausibility manipulation in temporarily ambiguous sentences. Multilevel models were used to study the relationship between working memory capacity and the extent to which readers were disrupted by syntactic misanalysis. This represented a cross-level interaction between an individual difference measure and a sentence-level characteristic. We compare a multilevel modeling approach to a standard approach based on ANOVA.
机译:在行为科学中,用于分析分层结构数据(包括重复测量数据)的多级模型的使用越来越普遍。这些模型是灵活的,并且可以通过各种市售的统计软件程序轻松实现。我们在眼动实验的上下文中考虑了它们的应用,该实验测试了读者对暂时性歧义句中语义合理性操纵的反应。多级模型用于研究工作记忆能力与句法错误分析对读者的干扰程度之间的关系。这代表了个体差异测度和句子水平特征之间的跨层次交互。我们将多层次建模方法与基于ANOVA的标准方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号