首页> 外文期刊>Autonomous Robots >Appearance-based mapping using minimalistic sensor models
【24h】

Appearance-based mapping using minimalistic sensor models

机译:使用简约传感器模型的基于外观的映射

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of localization and map construction by a mobile robot in an indoor environment. Instead of trying to build high-fidelity geometric maps, we focus on constructing topological maps as they are less sensitive to poor odometry estimates and position errors. We propose a modification to the standard SLAM algorithm in which the assumption that the robots can obtain metric distance/bearing information to landmarks is relaxed. Instead, the robot registers a distinctive sensor “signature”, based on its current location, which is used to match robot positions. In our formulation of this non-linear estimation problem, we infer implicit position measurements from an image recognition algorithm. We propose a method for incrementally building topological maps for a robot which uses a panoramic camera to obtain images at various locations along its path and uses the features it tracks in the images to update the topological map. The method is very general and does not require the environment to have uniquely distinctive features. Two algorithms are implemented to address this problem. The Iterated form of the Extended Kalman Filter (IEKF) and a batch-processed linearized ML estimator are compared under various odometric noise models.
机译:本文解决了在室内环境中使用移动机器人进行定位和地图构建的问题。与其尝试构建高逼真的几何图,我们不着重于构建拓扑图,因为它们对不良的里程表估计和位置误差不太敏感。我们提出了对标准SLAM算法的修改,其中放宽了机器人可以获取到地标的距离/承载信息的假设。取而代之的是,机器人根据其当前位置注册一个独特的传感器“签名”,用于匹配机器人位置。在我们对这个非线性估计问题的表述中,我们从图像识别算法中推断出隐式位置测量值。我们提出了一种为机器人逐步构建拓扑图的方法,该方法使用全景相机在沿其路径的各个位置获取图像,并使用其在图像中跟踪的特征来更新拓扑图。该方法非常通用,不需要环境具有独特的独特功能。实现了两种算法来解决此问题。在各种里程噪声模型下,对扩展卡尔曼滤波器(IEKF)的迭代形式和批处理的线性化ML估计量进行了比较。

著录项

  • 来源
    《Autonomous Robots》 |2008年第3期|229-246|共18页
  • 作者单位

    The Robotics Institute Carnegie Mellon University 5000 Forbes Ave. Pittsburgh PA 15213 USA;

    Department of Computer Science and Engineering 200 Union St. SE Minneapolis MN 55455 USA;

    Department of Computer Science and Engineering 200 Union St. SE Minneapolis MN 55455 USA;

    Department of Computer Science and Engineering 200 Union St. SE Minneapolis MN 55455 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual?SLAM; Kalman?filter; State?estimation;

    机译:视觉SLAM;卡尔曼滤波器;状态估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号