首页> 外文期刊>Automatika >CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm
【24h】

CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm

机译:MALD的CPU,GPU和FPGA实现:瓷砖表面缺陷检测算法

获取原文
获取原文并翻译 | 示例

摘要

U ovom radu razmatra se prilagodba, implementacija I usporedba performansi metode pomičnog usredn-javanja s lokalnom diferencijom (MALD) s primjenom u otkrivanju površinskih nedostataka na keramičkim pločicama. Proizvodna linija keramičkih pločica je autonomna sve do zadnje faze u kojoj je potreban ljudski vid kako bi se otkrili eventualni nedostaci na keramičkim pločicama. Nedavnim razvojem računalnih platformi I razvojem metoda računalnog vida omogućena je implementacija MALD metode na nekoliko načina. U nastojanju skraćenja vremena potrebnog za proizvodnju keramičkih pločica, MALD metoda je implementirana u trima različitim platformama: CPU (central processing unit), GPU (graphic processing unit) I FPGA (field programmable gate array), te s barem dva različita algoritma. Implementacija je izvršena sa MATLAB MEX/C++, C++, CUDA/C++, VHDL te Asembler programskim jezicima. Izmjerena vremena obrade su međusobno uspoređena za različite algoritme I njihove implementacije na različitim računalnim platformama.%This paper addresses adjustments, implementation and performance comparison of the Moving Average with Local Difference (MALD) method for ceramic tile surface defects detection. Ceramic tile production process is completely autonomous, except the final stage where human eye is required for defects detection. Recent computational platform development and advances in machine vision provides us with several options for MALD algorithm implementation. In order to exploit the shortest execution time for ceramic tile production process, the MALD method is implemented on three different platforms: CPU, GPU and FPGA, and it is implemented on each platform in at least two ways. Implementations are done in MATLAB's MEX/C++, C++, CUDA/C++, VHDL and Assembly programming languages. Execution times are measured and compared for different algorithms and their implementations on different computational platforms.
机译:本文讨论了局部平均移动平均法(MALD)在陶瓷瓷砖表面缺陷检测中的适应性,实现方法和性能比较。瓷砖生产线是自主的,直到需要人类视觉的最后阶段才能检测出瓷砖中可能存在的缺陷。计算机平台的最新发展和计算机视觉方法的发展已使MALD方法得以以多种方式实现。为了缩短生产瓷砖所需的时间,已在三种不同的平台上实施MALD方法:CPU(中央处理单元),GPU(图形处理单元)和FPGA(现场可编程门阵列),并使用至少两种不同的算法。该实现是使用MATLAB MEX / C ++,C ++,CUDA / C ++,VHDL和Assembler编程语言进行的。对于不同的算法及其在不同计算机平台上的实现,将测量的处理时间进行了相互比较。%本文介绍了用于检测瓷砖表面缺陷的带有局部差异的移动平均(MALD)方法的调整,实现和性能比较。瓷砖生产过程是完全自主的,除了需要人眼进行缺陷检测的最后阶段。计算机平台的最新发展和机器视觉的进步为我们提供了MALD算法实现的几种选择。为了利用最短的瓷砖生产过程执行时间,MALD方法在三种不同的平台上执行:CPU,GPU和FPGA,并且至少在两种平台上实现该方法。实现以MATLAB的MEX / C ++,C ++,CUDA / C ++,VHDL和Assembly编程语言完成。测量并比较了不同算法及其在不同计算平台上的实现的执行时间。

著录项

  • 来源
    《Automatika》 |2014年第1期|9-21|共13页
  • 作者单位

    Computer and Software Engineering Department, Faculty of Electrical Engineering, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia;

    Computer and Software Engineering Department, Faculty of Electrical Engineering, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia;

    Computer and Software Engineering Department, Faculty of Electrical Engineering, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CUDA; FPGA; GPU; Integral Image; MALD; Ceramic Tile;

    机译:CUDA;FPGA;GPU;整体形象;MALD;瓷砖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号