首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Inference-Based Ambiguity Management in Decentralized Decision-Making: Decentralized Diagnosis of Discrete-Event Systems
【24h】

Inference-Based Ambiguity Management in Decentralized Decision-Making: Decentralized Diagnosis of Discrete-Event Systems

机译:分散决策中基于推理的歧义管理:离散事件系统的分散诊断

获取原文
获取原文并翻译 | 示例

摘要

The task of decentralized decision-making involves interaction of a set of local decision-makers, each of which operates under limited sensing capabilities and is thus subjected to ambiguity during the process of decision-making. In our prior work, we made a key observation that such ambiguities are of differing gradations and presented a framework for inferencing over varying ambiguity levels to arrive at local and global control decisions. We develop a similar framework for performing diagnosis in a decentralized setting. For each event-trace executed by a system being monitored, each local diagnoser issues its own diagnosis decision (failure or nonfailure or unsure), tagged with a certain ambiguity level (zero being the minimum). A global diagnosis decision is taken to be a “winning” local diagnosis decision, i.e., one with a minimum ambiguity level. The computation of an ambiguity level for a local decision requires an assessment of the self-ambiguity as well as the ambiguities of the others, and an inference based up on such knowledge. In order to characterize the class of systems for which any fault can be detected within a uniformly bounded number of steps (or “delay”), we introduce the notion of $N$ -inference-diagnosability for Failures (also called $N$-inference F-diagnosability), where the index $N$ represents the maximum ambiguity level of any winning local decision. We show that the codiagnosability introduced in is the same as 0-inference F-diagnosability; the conditional F-codiagnosability introduced in , is a type of 1-inference F-diagnosability; the class of higher-in-ndex inference F-diagnosable systems strictly subsumes the class of lower-index ones; and the class of inference F-diagnosable systems is strictly subsumed by the class of systems that are centrally F-diagnosable.
机译:分散决策的任务涉及一组本地决策者的互动,每个决策者在有限的感知能力下运行,因此在决策过程中会产生歧义。在我们之前的工作中,我们主要观察到这种歧义具有不同的等级,并提供了一个推断各种歧义级别以得出本地和全局控制决策的框架。我们开发了在分散环境中进行诊断的类似框架。对于由受监视系统执行的每个事件跟踪,每个本地诊断程序都会发出自己的诊断决策(失败,不失败或不确定),并标记有一定的歧义级别(最小为零)。全局诊断决策被认为是“获胜”的局部诊断决策,即具有最小模糊度的决策。本地决策的歧义度的计算需要对自身歧义以及其他歧义的评估,并需要基于此类知识的推论。为了表征可以在统一步数(或“延迟”)内检测到任何故障的系统类别,我们引入了$ N $的概念-故障的推理能力(也称为$ N $-推论F-可诊断性),其中索引$ N $代表任何获胜的本地决策的最大歧义度。我们证明,引入的协同诊断能力与0推断F诊断能力相同。引入的条件F-可诊断性是一种1推论F-可诊断性;较高索引的F可诊断系统的类别严格包含较低索引的系统的类别。推理F可诊断系统的类别严格归为可中央F可诊断的系统类别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号