首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >A Bayesian Hierarchical Framework for Multitarget Labeling and Correspondence With Ghost Suppression Over Multicamera Surveillance System
【24h】

A Bayesian Hierarchical Framework for Multitarget Labeling and Correspondence With Ghost Suppression Over Multicamera Surveillance System

机译:用于多摄像机监视系统中鬼影抑制的多目标标记和对应的贝叶斯分层框架。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the main purpose is to locate, label, and correspond multiple targets with the capability of ghost suppression over a multicamera surveillance system. In practice, the challenges come from the unknown target number, the interocclusion among targets, and the ghost effect caused by geometric ambiguity. Instead of directly corresponding objects among different camera views, the proposed framework adopts a fusion-inference strategy. In the fusion stage, we formulate a posterior distribution to indicate the likelihood of having some moving targets at certain ground locations. Based on this distribution, a systematic approach is proposed to construct a rough scene model of the moving targets. In the inference stage, the scene model is inputted into a proposed Bayesian hierarchical detection framework, where the target labeling, target correspondence, and ghost removal are regarded as a unified optimization problem subject to 3-D scene priors, target priors, and foreground detection results. Moreover, some target priors, such as target height, target width, and the labeling results are iteratively refined based on an expectation-maximization (EM) mechanism to further boost system performance. Experiments over real videos verify that the proposed system can systematically determine the target number, efficiently label moving targets, precisely locate their 3-D locations, and effectively tackle the ghost problem.
机译:在本文中,主要目的是通过多摄像机监视系统定位,标记和对应具有重影抑制功能的多个目标。在实践中,挑战来自未知的目标数量,目标之间的相互遮挡以及几何歧义引起的重影效应。所提出的框架不是在不同摄像机视图之间直接对应的对象,而是采用融合推理策略。在融合阶段,我们制定后验分布以指示在某些地面位置具有一些移动目标的可能性。基于这种分布,提出了一种系统的方法来构造运动目标的粗糙场景模型。在推理阶段,将场景模型输入到建议的贝叶斯分层检测框架中,其中目标标记,目标对应关系和重影去除被视为受3D场景先验,目标先验和前景检测的统一优化问题。结果。此外,基于期望最大化(EM)机制迭代地完善了一些目标先验条件,例如目标高度,目标宽度和标记结果,以进一步提高系统性能。在真实视频上进行的实验证明,所提出的系统可以系统地确定目标数量,有效地标记运动目标,精确定位其3D位置并有效解决重影问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号