首页> 外文期刊>IEEE transactions on automation science and engineering >Data Providing Services Clustering and Management for Facilitating Service Discovery and Replacement
【24h】

Data Providing Services Clustering and Management for Facilitating Service Discovery and Replacement

机译:数据提供服务群集和管理,以促进服务发现和替换

获取原文
获取原文并翻译 | 示例

摘要

In service-oriented computing, a user usually needs to locate a desired service for: (i) fulfilling her requirements or (ii) replacing a service, which disappears or is unavailable for some reasons, to perform an interaction. With the increasing number of services available within an enterprise and over the Internet, locating a service online may not be appropriate from the performance perspective, especially in large Internet-based service repositories. Instead, services usually need to be clustered according to their similarity. Thereafter, services in one or several clusters are necessary to be examined online during dynamic service discovery. In this paper, we propose to cluster data providing (DP) services using a refined fuzzy $C$ -means algorithm. We consider the composite relation between DP service elements (i.e., input, output, and semantic relation between them) when representing DP services in terms of vectors. A DP service vector is assigned to one or multiple clusters with certain degrees. In addition, we introduce some operations for managing service clusters, when new services emerge or existing services disappear or become unavailable. When grouping similar services into one cluster, while partitioning different services into different clusters, the capability of service search engine is improved significantly. We have prototyped our approach and the source code is freely available on the web. We have evaluated our clustering approach in different settings and the results are very promising.
机译:在面向服务的计算中,用户通常需要为以下目的定位所需的服务:(i)满足她的要求,或(ii)替换因某种原因而消失或不可用的服务,以进行交互。随着企业内部和Internet上可用服务的数量不断增加,从性能角度来看,在线定位服务可能不合适,尤其是在基于Internet的大型服务库中。相反,通常需要根据服务的相似性对服务进行群集。此后,必须在动态服务发现期间在线检查一个或几个群集中的服务。在本文中,我们建议使用改进的模糊 $ C $ -means算法对数据提供(DP)服务进行聚类。当以向量表示DP服务时,我们考虑DP服务元素之间的复合关系(即输入,输出以及它们之间的语义关系)。将DP服务向量以一定程度分配给一个或多个群集。此外,当出现新服务或现有服务消失或不可用时,我们将介绍一些用于管理服务集群的操作。当将相似的服务分组到一个群集中时,将不同的服务划分到不同的群集中时,服务搜索引擎的功能将得到显着提高。我们已经对方法进行了原型设计,并且源代码可以在网上免费获得。我们已经在不同的环境中评估了我们的聚类方法,结果非常有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号