首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Development and Evaluation of Object-Based Visual Attention for Automatic Perception of Robots
【24h】

Development and Evaluation of Object-Based Visual Attention for Automatic Perception of Robots

机译:基于对象的机器人自动感知视觉注意力的开发与评估

获取原文
获取原文并翻译 | 示例

摘要

Bottom-up visual attention is an automatic behavior to guide visual perception to a conspicuous object in a scene. This paper develops a new object-based bottom-up attention (OBA) model for robots. This model includes four modules: Extraction of preattentive features, preattentive segmentation, estimation of space-based saliency, and estimation of proto-object-based saliency. In terms of computation, preattentive segmentation serves as a bridge to connect the space-based saliency and object-based saliency. This paper therefore proposes a preattentive segmentation algorithm, which is able to self-determine the number of proto-objects, has low computational cost, and is robust in a variety of conditions such as noise and spatial transformations. Experimental results have shown that the propsoed OBA model outperforms space-based attention model and other object-based attention methods in terms of accuracy of attentional selection, consistency under a series of noise settings and object completion.
机译:自下而上的视觉注意力是一种自动行为,可将视觉引导到场景中的显眼物体。本文为机器人开发了一种新的基于对象的自下而上的注意(OBA)模型。该模型包括四个模块:注意前特征的提取,注意前分割,基于空间的显着性估计以及基于原型对象的显着性估计。在计算方面,细心的分割充当连接基于空间的显着性和基于对象的显着性的桥梁。因此,本文提出了一种前瞻性的分割算法,该算法能够自行确定原型对象的数量,具有较低的计算成本,并且在各种条件下(例如噪声和空间变换)具有鲁棒性。实验结果表明,固定的OBA模型在注意选择的准确性,一系列噪声设置下的一致性和对象完成方面优于空基注意模型和其他基于对象的注意方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号