首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram
【24h】

An Automatic Screening Approach for Obstructive Sleep Apnea Diagnosis Based on Single-Lead Electrocardiogram

机译:基于单导心电图的阻塞性睡眠呼吸暂停诊断自动筛查方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional approaches for obstructive sleep apnea (OSA) diagnosis are apt to using multiple channels of physiological signals to detect apnea events by dividing the signals into equal-length segments, which may lead to incorrect apnea event detection and weaken the performance of OSA diagnosis. This paper proposes an automatic-segmentation-based screening approach with the single channel of Electrocardiogram (ECG) signal for OSA subject diagnosis, and the main work of the proposed approach lies in three aspects: (i) an automatic signal segmentation algorithm is adopted for signal segmentation instead of the equal-length segmentation rule; (ii) a local median filter is improved for reduction of the unexpected RR intervals before signal segmentation; (iii) the designed OSA severity index and additional admission information of OSA suspects are plugged into support vector machine (SVM) for OSA subject diagnosis. A real clinical example from PhysioNet database is provided to validate the proposed approach and an average accuracy of 97.41% for subject diagnosis is obtained which demonstrates the effectiveness for OSA diagnosis.
机译:传统的阻塞性睡眠呼吸暂停(OSA)诊断方法很容易使用生理信号的多个通道,通过将信号分成相等长度的片段来检测呼吸暂停事件,这可能会导致错误的呼吸暂停事件检测并削弱OSA诊断的性能。本文提出了一种基于单信号心电图信号自动分割的筛查方法,用于OSA受试者的诊断,该方法的主要工作在于三个方面:(i)采用自动信号分割算法信号分割代替等长分割规则; (ii)改进了局部中值滤波器,以减少信号分段之前的意外RR间隔; (iii)将设计的OSA严重性指数和OSA嫌疑人的其他入院信息插入支持向量机(SVM)中,以进行OSA主题诊断。提供了一个来自PhysioNet数据库的真实临床示例,以验证所提出的方法,并获得了97.41%的主题诊断平均准确度,这证明了OSA诊断的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号