首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Efficient Proximity Probing Algorithms for Metrology
【24h】

Efficient Proximity Probing Algorithms for Metrology

机译:高效的计量学近程探测算法

获取原文
获取原文并翻译 | 示例

摘要

Metrology, the theoretical and practical study of measurement, has applications in automated manufacturing, inspection, robotics, surveying, and healthcare. The geometric probing problem considers how to optimally use a probe to measure geometric properties. In this paper, we consider a proximity probe which, given a point, returns the distance to the boundary of the nearest object. When there is an unknown convex polygon in the plane, the goal is to minimize the number of probe measurement needed to exactly determine the shape and location of . We present an algorithm with upper bound of probes, where is the number of vertices and is the number of acute angles of . The algorithm requires constant time per probe, and hence, time to determine . We also address the related problem where the unknown polygon is a member of a known finite set and the goal is to efficiently determine which polygon is present. When is the size of and is the maximum number of vertices of any member of , we present an algorithm with an upper bound of
机译:计量学是测量的理论和实践研究,已应用于自动化制造,检查,机器人技术,测量和医疗保健领域。几何探测问题考虑了如何最佳地使用探针来测量几何特性。在本文中,我们考虑了一个接近探针,该探针给定一个点,将距离返回到最近物体的边界。当平面中存在未知的凸多边形时,目标是最大程度地减少精确确定的形状和位置所需的测头数量。我们提出了一种具有探针上限的算法,其中是的顶点数量和的锐角数量。该算法需要每个探针恒定的时间,因此需要确定的时间。我们还解决了相关问题,其中未知多边形是已知有限集的成员,目标是有效确定存在哪个多边形。当是的大小且是的任何一个成员的最大顶点数时,我们给出一个上限为的算法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号