首页> 外文期刊>IEEE transactions on automation science and engineering >Online Steady-State Detection for Process Control Using Multiple Change-Point Models and Particle Filters
【24h】

Online Steady-State Detection for Process Control Using Multiple Change-Point Models and Particle Filters

机译:使用多个更改点模型和粒子过滤器的过程控制在线稳态检测

获取原文
获取原文并翻译 | 示例

摘要

Steady-state detection is critical in process performance assessment, fault detection, and process automation and control. We proposed a robust online steady-state detection algorithm using multiple change-point model and particle filtering techniques. The steady-state detection problem is formulated as a multiple change-point problem using a segmented linear model. A particle filtering algorithm with stratified importance sampling and partial Gibbs move is developed to estimate this model. A generic timeliness improvement strategy is proposed to reduce the detection delay. Extensive numerical analysis shows that the proposed method is more accurate and robust than the other existing methods.
机译:稳态检测对于过程性能评估,故障检测以及过程自动化和控制至关重要。我们提出了一种使用多变化点模型和粒子滤波技术的鲁棒在线稳态检测算法。使用分段线性模型将稳态检测问题公式化为多变化点问题。开发了具有分层重要性采样和部分吉布斯移动的粒子滤波算法来估计该模型。提出了一种通用的及时性改进策略,以减少检测延迟。大量的数值分析表明,所提出的方法比其他现有方法更准确,更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号