首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Integration of Modified Inverse Observation Model and Multiple Hypothesis Tracking for Detecting and Tracking Humans
【24h】

Integration of Modified Inverse Observation Model and Multiple Hypothesis Tracking for Detecting and Tracking Humans

机译:改进的逆向观测模型与多重假设跟踪的集成,用于检测和跟踪人类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a complete perception system of moving point detection and target tracking for robustly following target humans in an unknown indoor dynamic environment. To detect moving points under grid-based formulation, a modified inverse observation model is proposed to overcome several frequently happened detection limitations. Next, related human-extraction techniques are proposed to filter out less possible clusters for detecting potential human target from these moving points. Finally, the multiple hypothesis tracking algorithm is implemented to deal with the data association problem for enhancing the reliability and robustness of the human tracking when measurements are noisy. Different levels of experiments have been performed to evaluate the effectiveness of the proposed algorithm framework.
机译:本文提出了一个完整的感知系统,可以在未知的室内动态环境中对目标人进行稳健的跟踪和目标跟踪。为了在基于网格的公式下检测运动点,提出了一种改进的逆观测模型,以克服几种经常发生的检测限制。接下来,提出了相关的人体提取技术,以从这些运动点中滤出较少的可能的聚类,以检测潜在的人类目标。最后,实现了多假设跟踪算法,以解决数据关联问题,提高了测量噪声时人类跟踪的可靠性和鲁棒性。已经进行了不同级别的实验,以评估所提出算法框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号