首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Relative Entropy-Based Density Selection in Particle Filtering for Load Demand Forecast
【24h】

Relative Entropy-Based Density Selection in Particle Filtering for Load Demand Forecast

机译:用于负荷需求预测的粒子滤波中基于熵的相对密度选择

获取原文
获取原文并翻译 | 示例

摘要

Particle filtering (PF) is an eminent simulation-based state estimation technique, which is capable of handling massive data sets and diverse external factors. Here, an effective selection of the importance density plays a pivotal role in performances of PFs by not only preventing degeneracy problems at early stages of process, but also taking both the transition prior and likelihood into account when the likelihood appears in the tail of the prior. To this end, we propose a novel importance density selection scheme for PF based on the minimum relative entropy principle. Theoretical derivation of the proposed scheme is presented, and its effectiveness is evaluated against various sampling schemes that exist in the literature using synthetic experiments. Finally, the performance of the proposed minimum relative entropy-based density selection scheme is successfully demonstrated for short-term electricity demand forecasting of a company located in Miami, FL, USA.
机译:粒子滤波(PF)是基于仿真的卓越状态估计技术,能够处理大量数据集和各种外部因素。在这里,有效密度的有效选择不仅可以防止过程早期阶段的退化问题,而且可以在考虑先验转变的可能性时考虑先验转变和先验可能性,从而在PF的性能中发挥关键作用。 。为此,我们提出了一种基于最小相对熵原理的PF重要密度选择方案。提出了该方案的理论推导,并使用合成实验针对文献中存在的各种采样方案评估了其有效性。最后,针对位于美国佛罗里达州迈阿密的一家公司的短期电力需求预测,成功证明了所建议的基于最小相对熵的密度选择方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号