首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Automated System for Semantic Object Labeling With Soft-Object Recognition and Dynamic Programming Segmentation
【24h】

Automated System for Semantic Object Labeling With Soft-Object Recognition and Dynamic Programming Segmentation

机译:带有软对象识别和动态程序分割的语义对象标签自动化系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an automated robotic system for generating semantic maps of inventory in retail environments. In retail settings, semantic maps are labeled maps of stores where each discrete section of shelving is assigned a department label describing the types of products on that shelf. Starting from a metric map of the store, the robot autonomously extracts the shelf boundaries, generates a distance-optimal tour of the store to view every shelf, and follows the tour while avoiding unmapped clutter and moving people. The robot creates a point cloud of the store using the data collected from this tour. We introduce a novel soft-object assignment algorithm to create a virtual map and a dynamic programming algorithm to segment this map. These algorithms use a priori information about the products to boost data from laser and camera sensors in order to recognize and semantically label objects. The primary contribution of this paper is the integration of multiple systems for automated path planning, navigation, object recognition, and semantic mapping. This paper represents an important contribution toward deploying mobile robots in dynamic human environments.
机译:本文提出了一种用于在零售环境中生成库存语义图的自动化机器人系统。在零售环境中,语义图被标记为商店的图,其中货架的每个离散部分都分配有一个部门标签,用于描述该货架上产品的类型。机器人从商店的度量图开始,自动提取货架边界,生成距离最佳的商店巡视路线,以查看每个货架,并跟随巡视路线,同时避免杂乱无章的人移动。机器人使用从这次巡回中收集的数据创建商店的点云。我们介绍了一种新颖的软对象分配算法来创建虚拟地图,以及动态编程算法来对该地图进行分段。这些算法使用有关产品的先验信息来增强来自激光和相机传感器的数据,以便识别并在语义上标记物体。本文的主要贡献是集成了用于自动化路径规划,导航,对象识别和语义映射的多个系统。本文代表了在动态人类环境中部署移动机器人的重要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号