首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >State-Based General Gamma CUSUM for Modeling Heart Rate Variability Using Electrocardiography Signals
【24h】

State-Based General Gamma CUSUM for Modeling Heart Rate Variability Using Electrocardiography Signals

机译:基于状态的通用Gamma CUSUM,用于使用心电图信号建模心率变异性

获取原文
获取原文并翻译 | 示例

摘要

Traditional approaches based on short-term heart rate variability for cardiovascular disease diagnosis fail to capture the long-term dynamic information and individual effect from electrocardiography signals among subjects when examining the physiological condition. These shortages may lead to incorrect disease detection and weaken diagnosis performance. To address these problems, this paper proposes a new disease detection approach by considering the long-term dynamics and meanwhile the individual effect existing among subjects. Specifically, a multistate general Gamma cumulative sum (GGCUSUM) scheme is developed for signal state detection. Further, a backward elimination algorithm based on the exponential likelihood ratio test (ELRT) is proposed to reduce the risk of incorrect detection of change points. A general disease severity index is then designed based on our approach to satisfy the clinical requirement for disease diagnosis. A real clinical case from one of cardiovascular diseases, is given to validate the proposed approach, of which the result demonstrates the effectiveness with a satisfactory detection performance.
机译:传统的基于短期心率变异性的心血管疾病诊断方法,在检查生理状况时无法从受试者的心电图信号中获取长期动态信息和个体效应。这些不足可能导致错误的疾病检测并削弱诊断性能。为了解决这些问题,本文提出了一种新的疾病检测方法,该方法考虑了长期动态并同时考虑了受试者之间存在的个体效应。具体而言,开发了用于信号状态检测的多状态通用Gamma累积和(GGCUSUM)方案。此外,提出了一种基于指数似然比检验(ELRT)的后向消除算法,以减少错误检测变化点的风险。然后根据我们的方法设计一般疾病严重程度指标,以满足疾病诊断的临床要求。给出了来自心血管疾病之一的真实临床案例,以验证所提出的方法,其结果证明了其有效性和令人满意的检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号