首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Learning Bayesian Network Structures to Augment Aircraft Diagnostic Reference Models
【24h】

Learning Bayesian Network Structures to Augment Aircraft Diagnostic Reference Models

机译:学习贝叶斯网络结构以增强飞机诊断参考模型

获取原文
获取原文并翻译 | 示例

摘要

Fault detection and isolation schemes are designed to detect the onset of adverse events during operations of complex systems, such as aircraft and industrial processes. The state-of-the-art fault diagnosis systems on aircraft combine an expert-created reference model of the associations between faults and symptoms, and a Naïve Bayes reasoner. For complex systems with many dependencies between components, the expert-generated reference models are often incomplete, which hinders timely and accurate fault diagnosis. Mining aircraft flight data is a promising approach to finding these missing relations between symptoms and data. However, mining algorithms generate a multitude of relations, and only a small subset of these relations may be useful for improving diagnoser performance. In this paper, we adopt a knowledge engineering approach that combines data mining methods with human expert input to update an existing reference model and improve the overall diagnostic performance. We discuss three case studies to demonstrate the effectiveness of this method.
机译:故障检测和隔离方案旨在检测复杂系统(例如飞机和工业流程)运行期间不良事件的发生。飞机上最先进的故障诊断系统结合了专家创建的故障和症状之间关联的参考模型,以及朴素的贝叶斯推理机。对于组件之间具有许多依赖性的复杂系统,专家生成的参考模型通常不完整,这会妨碍及时而准确的故障诊断。挖掘飞机的飞行数据是寻找症状和数据之间这些缺失关系的有前途的方法。但是,挖掘算法会生成大量关系,并且这些关系中只有一小部分可用于提高诊断性能。在本文中,我们采用了一种知识工程方法,将数据挖掘方法与专家输入相结合,以更新现有的参考模型并改善整体诊断性能。我们讨论了三个案例研究,以证明此方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号