首页> 外文期刊>IEEE transactions on automation science and engineering >Feature-Guided Nonrigid 3-D Point Set Registration Framework for Image-Guided Liver Surgery: From Isotropic Positional Noise to Anisotropic Positional Noise
【24h】

Feature-Guided Nonrigid 3-D Point Set Registration Framework for Image-Guided Liver Surgery: From Isotropic Positional Noise to Anisotropic Positional Noise

机译:用于图像引导肝脏手术的功能引导非格子3-D点设置注册框架:从各向同性位置噪声到各向异性位置噪声

获取原文
获取原文并翻译 | 示例

摘要

Registration is an essential problem in image-guided surgery (IGS) since it brings different involved coordinate frames together. Nonrigid or deformable registration still faces many challenges, such as two point sets (PSs) are partially overlapped. To tackle the challenges in the nonrigid registration, we introduce a new two-step point-based registration pipeline that includes two steps. In the first step, the rigid transformation between the two spaces is recovered where the orientation vectors are adopted. In the second step, built on the nonrigid coherent point drift (CPD) approach, the anisotropic positional noise is also assumed. Registration results on the human liver verify the proposed approach' great improvements over the other methods. First, the rotation and translation are recovered with smaller error values than the existing methods. Second, our registration method's performance is much more robust to the partial overlapping between two PSs. Third, the two-step registration framework achieves the best performances in most test cases when there is a localization error in acquiring the intraoperative data. Note to Practitioners-A novel registration approach is presented for image-guided liver surgery (LGLS). Compared with existing nonrigid registration methods, two significant changes (or improvements) exist in the proposed registration framework: 1) the normal vectors are extracted and utilized in the rigid registration step and 2) the anisotropic positional uncertainties are considered. In both steps, the registration problems are formulated as a maximum likelihood (ML) problems and dealt with the expectation-maximization (EM) technique. In both steps, the matrix form of the updated positional covariance is provided and can speed up the computational process. The readers are reminded that with extra information and a more general positional error assumption, our approach demonstrates improved performances in the case of partial-to-full alignment.
机译:注册是图像引导的手术(IGS)中的重要问题,因为它将不同的涉及坐标框架聚集在一起。非格子或可变形的注册仍然面临许多挑战,例如两点集(PSS)部分重叠。为了解决非实体注册中的挑战,我们介绍了一个新的两步点的注册管道,包括两个步骤。在第一步中,在采用方向向量之间恢复两个空间之间的刚性变换。在第二步中,构建在非脂肪相干点漂移(CPD)方法上,还假设各向异性位置噪声。人体肝脏的注册结果核实提出的方法对其他方法的巨大改进。首先,恢复旋转和转换,误差值比现有方法较小。其次,我们的注册方法的性能在两个PSS之间的部分重叠方面更加强大。第三,两步登记框架在获取术中数据时存在本地化误差时,在大多数测试用例中实现了最佳性能。向从业者的注意事项 - 为图像引导肝脏手术(LGLS)提出了一种新的注册方法。与现有的非抗原注册方法相比,在拟议的登记框架中存在两种显着的变化(或改进):1)在刚性登记步骤中提取和使用正常载体,2)考虑各向异性位置不确定性。在这两个步骤中,注册问题被制定为最大可能性(ml)问题,并处理最大化(EM)技术。在两个步骤中,提供更新的位置协方差的矩阵形式,并可以加速计算过程。提醒读者凭借额外的信息和更通用的位置错误假设,我们的方法在部分到完全对齐的情况下表现出改进的性能。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号