首页> 外文期刊>IEEE transactions on automation science and engineering >A New Approach to Solve Uncertain Multidisciplinary Design Optimization Based on Conditional Value at Risk
【24h】

A New Approach to Solve Uncertain Multidisciplinary Design Optimization Based on Conditional Value at Risk

机译:一种基于风险条件价值解决不确定多学科设计优化的新方法

获取原文
获取原文并翻译 | 示例

摘要

Design optimization of complex engineering problems often involves multiple disciplines or subsystems that usually exist couplings or data interactions with each other. Multidisciplinary design optimization (MDO) is an advanced methodology to deal with such problems. Besides, uncertainty is a crucial factor affecting the performance of complex systems. Therefore, uncertain MDO (UMDO) is the focus of current engineering design research. This article proposes a novel (UMDO) method based on the conditional value at risk (CVaR) as a supplement and alternative scheme to traditional (UMDO) approaches. First, the number of multidisciplinary analyses of complex systems was reduced using collaboration models. Second, metamodels were constructed to simulate data interaction between multidisciplinary systems. Then, an approximate method for CVaR under uncertainty risk analysis was derived. A UMDO framework based on CVaR was constructed. The optimization process was driven by the gradient-based Monte Carlo simulation method. Finally, three different complexity examples verified the accuracy and efficiency of the proposed approach. Note to Practitioners-This article is motivated by the problem of optimization under uncertainty for complex multidisciplinary systems, but it is also applicable to other single-disciplinary uncertain optimizations. Existing uncertain multidisciplinary design optimization (UMDO) methods usually require complex multidisciplinary decoupling and uncertainty propagation analysis, which limits the application of complex system optimization methods. This article suggests a new method that uses the conditional value at risk (CVaR) analysis to quantify uncertain parameters and uses a collaboration model to decouple multidisciplinary systems. This method provides an effective new scheme for the optimization of complex systems under uncertainties. In this article, we describe mathematically the expression and approximation methods of CVaR analysis. We then show how to effectively decouple multidisciplinary systems through a collaboration model. Finally, a framework for UMDO is constructed. By applying this method to three examples, the results suggest that this method is feasible and effective. In future research, the problem of complex system optimization under mixed uncertainties of parameters and models will be investigated.
机译:复杂工程问题的设计优化往往涉及多个学科或子系统,通常彼此存在耦合或数据交互。多学科设计优化(MDO)是处理此类问题的先进方法。此外,不确定性是影响复杂系统性能的关键因素。因此,不确定的MDO(UMDO)是当前工程设计研究的重点。本文提出了一种基于风险(CVAR)的条件值(CVAR)作为传统(UMDO)方法的补充和替代方案的新颖(UMDO)方法。首先,使用协作模型减少了复杂系统的多学科分析的数量。其次,构建元模型以模拟多学科系统之间的数据交互。然后,推导出在不确定风险分析下的CVAR近似方法。构建了基于CVAR的UMDO框架。优化过程由基于梯度的蒙特卡罗模拟方法驱动。最后,三种不同的复杂性示例验证了所提出的方法的准确性和效率。向从业者 - 本文的注意事项受到复杂多学科系统的不确定性下的优化问题,但它也适用于其他单学科不确定优化。现有不确定的多学科设计优化(UMDO)方法通常需要复杂的多学科解耦和不确定性传播分析,这限制了复杂系统优化方法的应用。本文介绍了一种使用风险(CVAR)分析的条件值来量化不确定参数的新方法,并使用协作模型解除多学科系统。该方法提供了一种有效的新方案,用于在不确定性下优化复杂系统。在本文中,我们在数学上描述了CVAR分析的表达和近似方法。然后,我们将通过协作模型展示如何有效地解耦多学科系统。最后,构建了umdo的框架。通过将这种方法应用于三个例子,结果表明这种方法是可行的和有效的。在未来的研究中,将研究复杂的系统优化在参数和模型的混合不确定性下的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号