首页> 外文期刊>IEEE transactions on automation science and engineering >An Intelligent Optimization Method for Optimal Virtual Machine Allocation in Cloud Data Centers
【24h】

An Intelligent Optimization Method for Optimal Virtual Machine Allocation in Cloud Data Centers

机译:云数据中心最佳虚拟机分配智能优化方法

获取原文
获取原文并翻译 | 示例

摘要

A cloud computing paradigm has quickly developed and been applied widely for more than ten years. In a cloud data center, cloud service providers offer many kinds of cloud services, such as virtual machines (VMs), to users. How to achieve the optimized allocation of VMs for users to satisfy the requirements of both users and providers is an important problem. To make full use of VMs for providers and ensure low makespan of user tasks, we formulate an optimal allocation model of VMs and develop an improved differential evolution (IDE) method to solve this optimization problem, given a batch of user tasks. We compare the proposed method with several existing methods, such as round-robin (RR), min-min, and differential evolution. The experimental results show that it can more efficiently decrease the cost of cloud service providers while achieving lower makespan of user tasks than its three peers. Note to Practitioners-VM allocation is one of the challenging problems in cloud computing systems, especially when user task makespan and cost of cloud service providers have to be considered together. We propose an IDE approach to solve this problem. To show its performance, this article compares the commonly used methods, i.e., RR and min-min, as well as the classic differential evolution method. A cloud simulation platform called CloudSim is used to test these methods. The experimental results show that the proposed one can well outperform its compared ones, and its VM allocation results can achieve the highest satisfaction of both users and providers. The proposed method can be readily applicable to industrial cloud computing systems.
机译:云计算范式很快开发并已广泛应用于十多年。在云数据中心,云服务提供商提供多种云服务,例如虚拟机(VM),对用户提供多种云服务。如何实现VM的优化分配,为用户满足用户和提供商的要求是一个重要问题。为了充分利用VM提供商,确保用户任务的低Mapspan,我们为VM的最佳分配模型制定了一个改进的差分演进(IDE)方法来解决该优化问题,给定批次用户任务。我们将提出的方法与几种现有方法进行比较,例如循环(RR),MIN-MIN和差分演进。实验结果表明,它可以更有效地降低云服务提供商的成本,同时实现比其三个同行的用户任务的较低的纸张。从业者-VM分配是云计算系统的具有挑战性问题之一,尤其是当用户任务班车和云服务提供商的成本时必须一起考虑。我们提出了一种解决这个问题的IDE方法。为了显示其性能,本文将常用的方法,即RR和Min-min进行比较,以及经典差分演进方法。一个名为CloudSim的云模拟平台用于测试这些方法。实验结果表明,建议的结果可以很好地优于其比较的,其VM分配结果可以实现用户和提供者的最高满意度。所提出的方法可以容易地适用于工业云计算系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号