首页> 外文期刊>IEEE transactions on automation science and engineering >Automated Geometric Shape Deviation Modeling for Additive Manufacturing Systems via Bayesian Neural Networks
【24h】

Automated Geometric Shape Deviation Modeling for Additive Manufacturing Systems via Bayesian Neural Networks

机译:贝叶斯神经网络加附加制造系统自动的几何形状偏差建模

获取原文
获取原文并翻译 | 示例

摘要

A significant challenge in comprehensive geometric accuracy control of an additive manufacturing (AM) system is the specification of shape deviation models for different computer-aided design products manufactured on its constituent AM processes. Current deviation modeling techniques do not satisfactorily address this challenge because they can require substantial user inputs and efforts to implement. We present a new model building methodology based on a class of Bayesian neural networks (NNs) that directly addresses this challenge with much less effort. Our method enables automated deviation modeling of different shapes and AM processes and yields models with higher predictive accuracies compared to the existing modeling methods on the same samples of manufactured products. A fundamental innovation in our methodology is the design of new and connectable NN structures that facilitate the leveraging of previously specified deviation models for adaptive model building of new shapes and AM processes. The power and broad scope of our method are demonstrated with several case studies on both in-plane and out-of-plane deviations for a wide variety of shapes manufactured under different stereolithography processes. Our Bayesian methodology for automated and comprehensive deviation modeling can ultimately help to advance flexible, efficient, and high-quality manufacturing in an AM system. Note to Practitioners-Additive manufacturing (AM) systems possess an intrinsic capability for one-of-a-kind manufacturing of a vast variety of shapes across a wide spectrum of constituent processes. Learning how to control geometric shape accuracy in a comprehensive manner for an AM system is vital to its operation. This task is challenging due to constraints on the number of test shapes that can be manufactured and user efforts that can be devoted for learning and predicting geometric errors of different sets of shapes and AM processes. This article presents an automated machine learning methodology for comprehensive learning and prediction of geometric errors in an AM system based on a limited number of test shapes manufactured under different processes. Several case studies serve to validate the potential of our methodology to learn effective geometric accuracy control policies for general AM systems in practice.
机译:添加剂制造(AM)系统的综合几何精度控制中的一个重大挑战是在其组成am工艺中制造的不同计算机辅助设计产品的形状偏差模型的规范。目前的偏差建模技术并不令人满意地解决这一挑战,因为它们可能需要大量的用户输入和努力来实现。我们介绍了一类基于一类贝叶斯神经网络(NNS)的新模型建筑方法,这些方法直接以更少的努力解决这一挑战。我们的方法使不同形状和AM过程的自动偏差建模,并与制造产品的相同样本上的现有建模方法相比,产生具有更高预测精度的模型。我们的方法论的基本创新是设计新的和可连接的NN结构,便于利用以前指定的新形状和AM过程的适应性模型建设的先前指定的偏差模型。我们方法的功率和广泛的范围是用几种关于在不同立体化过程中制造的各种形状的平面内和外平面偏差的案例研究。我们对自动化和全面偏差建模的贝叶斯方法最终有助于在AM系统中推进灵活,高效,高质量的制造。注释从业者 - 添加剂制造(AM)系统具有在广泛的构成过程中的各种形状的单一制造的内在能力。学习如何以全面的方式控制几何形状精度对于AM系统至关重要。由于可以制造和用户努力的测试形状的数量的限制,这项任务是具有挑战性的,这些测试形状可以致力于学习和预测不同形状和AM过程的不同形状的几何误差。本文提出了一种自动化机器学习方法,用于全面学习和预测AM系统的几何误差,基于不同过程制造的有限数量的测试形状。几个案例研究有助于验证我们的方法的潜力,以便在实践中学习一般AM系统的有效的几何准确性控制策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号