首页> 外文期刊>IEEE transactions on automation science and engineering >Scheduling Semiconductor Testing Facility by Using Cuckoo Search Algorithm With Reinforcement Learning and Surrogate Modeling
【24h】

Scheduling Semiconductor Testing Facility by Using Cuckoo Search Algorithm With Reinforcement Learning and Surrogate Modeling

机译:通过使用Cuckoo搜索算法进行加固学习和代理建模的调度半导体测试设施

获取原文
获取原文并翻译 | 示例

摘要

A semiconductor final testing scheduling problem with multiresource constraints is considered in this paper, which is proved to be NP-hard. To minimize the makespan for this scheduling problem, a cuckoo search algorithm with reinforcement learning (RL) and surrogate modeling is presented. A parameter control scheme is proposed to ensure the desired diversification and intensification of population on the basis of RL, which uses the proportion of beneficial mutation as feedback information according to Rechenberg's 1/5 criterion. To reduce computational complexity, a surrogate model is employed to evaluate the relative ranking of solutions. A heuristic approach based on the relative ranking of encoding value and a modular function is proposed to convert continuous solutions obtained from Levy flight into discrete ones. The computational complexity and convergence analysis results are presented. The proposed algorithm is validated with benchmark and randomly generated cases. Various simulation experiments and comparison between the proposed algorithm and several popular methods are performed to validate its effectiveness.Note to Practitioners-Scheduling of semiconductor final testing is usually solved via intelligent optimization algorithms. Nevertheless, most of them are parameter-sensitive, and thus, selecting their proper parameters is a huge challenge. In order to deal with the parameter selection issue, we propose a reinforcement learning (RL) algorithm to self-adjust their parameters. To reduce the computational burden, we propose to use surrogate modeling of the reward function in RL and determine which nests should be reserved in cuckoo search. As a result, our algorithm possesses higher robustness and can obtain a high-quality schedule than the existing algorithms for semiconductor final testing facility. In addition, it has a lower computational complexity via the proposed surrogate model, and thus, a feasible solution can be obtained in a short time for real-time scheduling. Experimental results show that the proposed method well outperforms some existing algorithms. Hence, it can be readily applied to industrial semiconductor final testing facility scheduling problems.
机译:本文考虑了具有多路源约束的半导体最终测试调度问题,这被证明是NP-HARD。为了使该调度问题最小化Mapspan,提出了一种具有增强学习(RL)和代理建模的Cuckoo搜索算法。提出了一种参数控制方案,以确保基于RL的群体的所需多样化和强化,这利用受益突变的比例作为根据Rechenberg的1/5标准的反馈信息。为了降低计算复杂性,采用代理模型来评估解决方案的相对排名。提出了一种基于编码值和模块化功能的相对等级的启发式方法,以将从征收飞行中获得的连续解决方案转换为离散的。提出了计算复杂性和收敛分析结果。该算法用基准和随机生成的情况验证。进行各种仿真实验和所提出的算法与几种流行方法的比较,以验证其有效性。通过智能优化算法来解决半导体最终测试的从业者调度。然而,大多数是参数敏感的,因此选择正确的参数是一个巨大的挑战。为了处理参数选择问题,我们提出了一种加强学习(RL)算法来自调整它们的参数。为了减少计算负担,我们建议使用RL中的奖励功能的代理建模,并确定应在Cuckoo搜索中保留哪些巢穴。因此,我们的算法具有更高的鲁棒性,并且可以比现有的半导体最终测试设施算法获得高质量的时间表。另外,通过所提出的代理模型具有较低的计算复杂性,因此,可以在用于实时调度的短时间内获得可行的解决方案。实验结果表明,所提出的方法优于一些现有算法。因此,它可以容易地应用于工业半导体最终测试设施调度问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号