首页> 外文期刊>IEEE transactions on automation science and engineering >Twofold Variation Propagation Modeling and Analysis for Roll-to-Roll Manufacturing Systems
【24h】

Twofold Variation Propagation Modeling and Analysis for Roll-to-Roll Manufacturing Systems

机译:轧辊制造系统的双重变化传播建模与分析

获取原文
获取原文并翻译 | 示例

摘要

Roll-to-roll (R2R) manufacturing has emerged as one of the most cost-effective manufacturing techniques for high-volume production of flexible printing electronics, graphene films, thin-film batteries, and solar cells, as opposed to low-volume batch production. However, in practice, real-time monitoring of the R2R process and in situ measurement of fabricated materials during production are challenging because of the high speed and dynamic variation of the web. In addition, due to the lack of cost-effective sensors and in-line metrology systems with a large range and high resolution, effective quality control and defect diagnosis are difficult to achieve. To address these challenges, this paper aims to develop analytical models that can serve as virtual sensing and metrology tools to quantify process state variation and estimate product quality in R2R processes with limited accessibility of in situ sensor. First, the quality variation propagation mechanism in R2R processes is investigated. Second, a hybrid multistage modeling method is proposed to characterize the twofold variation propagation-product-centric and process-centric variations, and its relationship with product quality in R2R processes.Note to Practitioners-The novel modeling method developed in this paper employs both physics-based analysis (e.g., web handling system dynamics) and regression methods [e.g., censored regression and linear/logistic regression (LG)] using multisensor signals. The estimation results from the model can serve as virtual sensing and virtual metrology tools to increase the system visibility and be applied for process monitoring and error detection in real time. A print registration unit of elastic film in a roll-to-roll system is employed to demonstrate and validate the proposed modeling method in terms of the accuracy of state estimates and quality prediction. Based on the comparison results, the hybrid modeling method shows higher accuracy in state estimation and quality prediction than do the models with data-driven methods only.
机译:轧辊(R2R)制造业作为柔性印刷电子,石墨烯薄膜,薄膜电池和太阳能电池的大量生产的最具成本效益的制造技术之一,而不是低批量批量生产。然而,在实践中,由于幅材的高速和动态变化,在生产过程中对R2R过程的实时监测和原位测量的制造材料是具有挑战性的。此外,由于缺乏具有大范围和高分辨率的成本效益的传感器和在线计量系统,难以实现有效的质量控制和缺陷诊断。为了解决这些挑战,本文旨在开发分析模型,可以作为虚拟传感和计量工具,以量化过程状态变化和估算R2R过程中的产品质量,其原位传感器的可访问性有限。首先,研究了R2R过程中的质量变化传播机制。其次,提出了一种混合多级建模方法,以表征双重变化传播 - 产品中心和以过程为中心的变化,以及其与R2R过程中的产品质量的关系。注意到从业者 - 本文开发的新型建模方法采用了物理学基于分析(例如,Web处理系统动态)和回归方法[例如,使用多传感器信号进行缩短的回归和线性/逻辑回归(LG)]。该模型的估计结果可以用作虚拟感测和虚拟计量工具,以提高系统可见性,并实时应用于过程监控和错误检测。在卷到卷系统中的弹性膜的印刷配准单元在状态估计和质量预测的准确性方面展示和验证所提出的建模方法。基于比较结果,混合建模方法在状态估计和质量预测中显示了更高的精度,而不是仅具有数据驱动方法的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号