首页> 外文期刊>IEEE transactions on automation science and engineering >Spatiotemporal Task Scheduling for Heterogeneous Delay-Tolerant Applications in Distributed Green Data Centers
【24h】

Spatiotemporal Task Scheduling for Heterogeneous Delay-Tolerant Applications in Distributed Green Data Centers

机译:分布式绿色数据中心中异构延迟容忍应用的时空任务调度

获取原文
获取原文并翻译 | 示例

摘要

A growing number of organizations deploy multiple heterogeneous applications in infrastructures of distributed green data centers (DGDCs) to flexibly provide services to users around the world in a low-cost and high-quality way. The skyrocketing growth in types and number of heterogeneous applications dramatically increases the amount of energy consumed by DGDCs. The spatial and temporal variations in prices of power grid and availability of renewable energy make it highly challenging to minimize the energy cost of DGDC providers by intelligently scheduling arriving tasks of heterogeneous applications among GDCs while meeting their expected delay bound constraints. Unlike existing studies, this paper proposes a spatiotemporal task scheduling (STTS) algorithm to minimize energy cost by cost-effectively scheduling all arriving tasks to meet their delay bound constraints. STTS well investigates spatial and temporal variations in DGDCs. In each time slot, the energy cost minimization problem is formulated as a nonlinear constrained optimization one and addressed with the proposed genetic simulated-annealing-based particle swarm optimization. Trace-driven experiments show that STTS achieves larger throughput and lower energy cost than several typical task scheduling approaches while strictly meeting all tasks' delay bound constraints. Note to Practitioners This paper investigates the energy cost minimization problem for a DGDC provider while meeting delay bound constraints for all arriving tasks. Previous scheduling methods do not jointly consider spatial and temporal variations in prices of power grid and availability of renewable energy in DGDCs. Therefore, they fail to adopt such variations to minimize the energy cost of a DGDC provider. In this paper, a new method that avoids disadvantages of previous methods is proposed. It is realized by adopting a hybrid metaheuristic algorithm named GSP to solve a nonlinear constrained optimization problem. Experimental results demonstrate that compared with several typical methods, it reduces energy cost and increases throughput. It can be readily integrated into realistic industrial DGDCs. The future work requires engineers to consider the effect of indeterminacy and uncertainty of green energy on scheduling methods.
机译:越来越多的组织在分布式绿色数据中心(DGDC)的基础架构中部署多个异构应用程序,以低成本和高质量的方式灵活地为全球用户提供服务。异构应用程序的类型和数量激增,极大地增加了DGDC消耗的能量。电网价格的时空变化和可再生能源的可用性,通过智能地调​​度GDC之间异构应用程序的到达任务,同时满足其预期的延迟界限约束,最大程度地降低DGDC提供者的能源成本具有很大的挑战性。与现有研究不同,本文提出了一种时空任务调度(STTS)算法,通过经济高效地调度所有到达的任务来满足其延迟约束,从而最大程度地降低了能源成本。 STTS很好地研究了DGDC中的时空变化。在每个时隙中,将能量成本最小化问题公式化为非线性约束最优化问题,并通过提出的基于遗传模拟退火的粒子群算法解决该问题。跟踪驱动的实验表明,STTS与几种典型的任务调度方法相比,可以实现更大的吞吐量和更低的能源成本,同时严格满足所有任务的延迟约束。给从业者的注意事项本文研究了DGDC提供者的能源成本最小化问题,同时满足了所有到达任务的延迟限制。以前的调度方法没有共同考虑电网价格的时空变化以及DGDC中可再生能源的可用性。因此,他们无法采用此类变体来最小化DGDC提供者的能源成本。在本文中,提出了一种避免了先前方法的缺点的新方法。它是通过采用称为GSP的混合元启发式算法来解决非线性约束优化问题而实现的。实验结果表明,与几种典型方法相比,它可以降低能源成本并提高产量。它可以很容易地集成到现实的工业DGDC中。未来的工作要求工程师考虑绿色能源不确定性和不确定性对调度方法的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号