首页> 外文期刊>Automation in construction >Residual CNN + Bi-LSTM model to analyze GPR B scan images
【24h】

Residual CNN + Bi-LSTM model to analyze GPR B scan images

机译:残差CNN + BI-LSTM模型分析GPR B扫描图像

获取原文
获取原文并翻译 | 示例

摘要

In this study, the residual Convolutional Neural Network (CNN) with the Bidirectional Long Short Time Memory (Bi-LSTM) model has proposed for the analysis of Ground Penetrating Radar B scan (GPR B Scan) images. GPR characteristics, scanning frequency, and soil type make it very difficult to analyze GPR B Scan images. Also, noise and clutter in the image make this problem more challenging. The proposed method shows high performance in determining the scanning frequency of GPR B Scan images, type of GPR device, and the type of soil. In particular, residual structures and types of Bi-LSTMs connection within the proposed method led to increasing the performance. The metric performance of the proposed method is higher compared to other transfer learning based CNN structures.
机译:在本研究中,已经提出了具有双向长短时间存储器(BI-LSTM)模型的残余卷积神经网络(CNN)用于分析地面穿透雷达B扫描(GPR B扫描)图像。 GPR特性,扫描频率和土壤类型使得分析GPR B扫描图像非常困难。此外,图像中的噪音和杂乱使得这个问题更具挑战性。所提出的方法在确定GPR B扫描图像的扫描频率,GPR器件类型和土壤类型时,表现出高性能。特别地,所提出的方法内的剩余结构和双LSTM连接的类型导致了提高性能。与基于其他转移学习的CNN结构相比,所提出的方法的度量性能更高。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号