首页> 外文期刊>Automatic Documentation and Mathematical Linguistics >Automatic Recognition of Chemical Entity Mentions in Texts of Scientific Publications
【24h】

Automatic Recognition of Chemical Entity Mentions in Texts of Scientific Publications

机译:在科学出版物文本中自动识别化学实体提到

获取原文
获取原文并翻译 | 示例

摘要

The huge space of experimental data on biological and chemical objects and their interactions contributes to the rapid growth of scientific publications containing their analysis. Such data may include characteristics of low-molecular-weight compounds, results of their biological activity evaluation, and their interaction with human and animal proteins, methods of synthesis of organic compounds, and their classification. The past decades saw the development of methods for automated extraction of data from texts of scientific publications, including those for retrieval of names of organic compounds. These data can be used for the automatic identification of the names of organic compounds, including all possible synonyms. Since the topics of scientific publications are diverse, the extracted data can be applied to obtain information about (1) classification of organic compounds (2) methods of synthesis of a given organic compound; (3) physicochemical properties of this compound; (4) its interaction with high-molecular-weight compounds (including proteins, mRNA of animals and humans); and (5) the therapeutic properties of organic compounds, the active substance of the drug, and data on clinical trials. This review considers the methods aimed at searching and extracting data on names of low-molecular-weight compounds and interactions between them and animal and human proteins (biological objects), as well as data on experimentally confirmed biological activity and the effects of organic compounds (including drugs) on pathological processes. Here, we discuss the methods developed and the results of their application published over the past 10 years.
机译:生物和化学物体的实验数据的巨大空间及其相互作用有助于含有分析的科学出版物的快速增长。这些数据可包括低分子量化合物的特征,其生物活性评价的结果,以及它们与人和动物蛋白的相互作用,合成有机化合物的方法及其分类。过去几十年来发展了从科学出版物文本自动提取数据的方法,包括检索有机化合物名称的数据。这些数据可用于自动识别有机化合物的名称,包括所有可能的同义词。由于科学出版物的主题是多样的,所提取的数据可以应用于获得关于(1)有机化合物(2)合成方法的组合方法的信息的信息; (3)该化合物的物理化学性质; (4)其与高分子量化合物的相互作用(包括蛋白质,动物和人类的mRNA); (5)有机化合物,药物活性物质和临床试验数据的治疗性质。该审查考虑了旨在搜索和提取关于低分子量化合物的名称和它们与动物和人类蛋白质(生物物体)的相互作用的数据的方法,以及关于实验证实的生物活性的数据和有机化合物的影响(在病理过程中包括药物。在这里,我们讨论了在过去10年中发布的制定的方法和其申请结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号