首页> 外文期刊>Automatic Documentation and Mathematical Linguistics >Automatic Classification Methods for Electronic Text Documents
【24h】

Automatic Classification Methods for Electronic Text Documents

机译:电子文本文档的自动分类方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic classification of electronic text documents is considered; methods are described for constructing classifications: probabilistic, non-numerical, regression, Rocchio's method, neuron nets, an example-based method, the reference-vector method, and the maximum-entropy simulation method; there is a discussion of estimating the performance and throughput of these methods. Results are given on the methods evaluated in the traditions of information retrieval, but the main emphasis is placed on comparing various aspects of the software implementation important to selecting methods for particular job conditions.
机译:考虑电子文本文件的自动分类;描述了用于构造分类的方法:概率,非数值,回归,Rocchio方法,神经网络,基于实例的方法,参考矢量方法和最大熵模拟方法;讨论了估计这些方法的性能和吞吐量。结果给出了在信息检索传统中评估的方法,但主要重点放在比较软件实现的各个方面,这些方面对于选择特定工作条件的方法很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号