首页> 外文期刊>IEEE Transactions on Automatic Control >Large deviations theory and efficient simulation of excessive backlogs in a GI/GI/m queue
【24h】

Large deviations theory and efficient simulation of excessive backlogs in a GI/GI/m queue

机译:GI / GI / m队列中的大偏差理论和过量积压的有效模拟

获取原文
获取原文并翻译 | 示例

摘要

The problem of using importance sampling to estimate the average time to buffer overflow in a stable GI/GI/m queue is considered. Using the notion of busy cycles, estimation of the expected time to buffer overflow is reduced to the problem of estimating p/sub n/=P (buffer overflow during a cycle) where n is the buffer size. The probability p/sub n/ is a large deviations probability (p/sub n/ vanishes exponentially fast as n to infinity ). A rigorous analysis of the method is presented. It is demonstrated that the exponentially twisted distribution of S. Parekh and J. Walrand (1989) has the following strong asymptotic-optimality property within the nonparametric class of all GI/GI importance sampling simulation distributions. As n to infinity , the computational cost of the optimal twisted distribution of large deviations theory grows less than exponentially fast, and conversely, all other GI/GI simulation distributions incur a computational cost that grows with strictly positive exponential rate.
机译:考虑了使用重要性采样来估计在稳定的GI / GI / m队列中缓冲溢出的平均时间的问题。使用繁忙周期的概念,将估计缓冲区溢出的预期时间简化为估计p / sub n / = P(一个周期内的缓冲区溢出)的问题,其中n是缓冲区大小。概率p / sub n /是较大的偏差概率(p / sub n /随n到无穷大呈指数级消失)。对该方法进行了严格的分析。结果表明,S。Parekh和J. Walrand(1989)的指数扭曲分布在所有GI / GI重要性抽样模拟分布的非参数类中具有以下强大的渐近最优性。当n变为无穷大时,大偏差理论的最佳扭曲分布的计算成本增长的速度小于指数增长,相反,所有其他GI / GI模拟分布的计算成本却以严格的正指数速率增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号