首页> 外文期刊>Automatic Control, IEEE Transactions on >Cooperative Filters and Control for Cooperative Exploration
【24h】

Cooperative Filters and Control for Cooperative Exploration

机译:协同勘探的协同过滤器和控制

获取原文

摘要

Autonomous mobile sensor networks are employed to measure large-scale environmental fields. Yet an optimal strategy for mission design addressing both the cooperative motion control and the cooperative sensing is still an open problem. We develop strategies for multiple sensor platforms to explore a noisy scalar field in the plane. Our method consists of three parts. First, we design provably convergent cooperative Kalman filters that apply to general cooperative exploration missions. Second, we present a novel method to determine the shape of the platform formation to minimize error in the estimates and design a cooperative formation control law to asymptotically achieve the optimal formation shape. Third, we use the cooperative filter estimates in a provably convergent motion control law that drives the center of the platform formation to move along level curves of the field. This control law can be replaced by control laws enabling other cooperative exploration motion, such as gradient climbing, without changing the cooperative filters and the cooperative formation control laws. Performance is demonstrated on simulated underwater platforms in simulated ocean fields.
机译:自主移动传感器网络用于测量大规模环境领域。然而,针对任务设计的最佳策略同时解决了协同运动控制和协同感测仍然是一个悬而未决的问题。我们开发了用于多个传感器平台的策略,以探索平面中的嘈杂标量场。我们的方法包括三个部分。首先,我们设计适用于一般合作勘探任务的可证明收敛的合作卡尔曼滤波器。其次,我们提出了一种新颖的方法来确定平台地层的形状,以最大程度地减少估计误差,并设计一种协作地层控制律,以渐近地实现最佳地层形状。第三,我们在可证明的收敛运动控制定律中使用协同滤波器估计,该定律会驱动平台形成的中心沿着场的水平曲线移动。该控制定律可以由控制定律代替,该控制定律可以进行其他协作勘探运动,例如梯度爬升,而无需更改协作过滤器和协作岩层控制定律。在模拟海洋领域的模拟水下平台上演示了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号