首页> 外文期刊>Automatic Control, IEEE Transactions on >Distributed Matrix Scaling and Application to Average Consensus in Directed Graphs
【24h】

Distributed Matrix Scaling and Application to Average Consensus in Directed Graphs

机译:分布式矩阵定标及其在有向图平均共识中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a class of distributed iterative algorithms that enable the asymptotic scaling of a primitive column stochastic matrix, with a given sparsity structure, to a doubly stochastic form. We also demonstrate the application of these algorithms to the average consensus problem in networked multi-component systems. More specifically, we consider a setting where each node is in charge of assigning weights on its outgoing edges based on the weights on its incoming edges. We establish that, as long as the (generally directed) graph that describes the communication links between components is strongly connected, each of the proposed matrix scaling algorithms allows the system components to asymptotically assign, in a distributed fashion, weights that comprise a primitive doubly stochastic matrix. We also show that the nodes can asymptotically reach average consensus by executing a linear iteration that uses the time-varying weights (as they result at the end of each iteration of the chosen matrix scaling algorithm).
机译:我们提出了一类分布式迭代算法,该算法可将具有给定稀疏结构的原始列随机矩阵渐近缩放为双随机形式。我们还演示了这些算法在网络多组件系统中的平均共识问题上的应用。更具体地说,我们考虑一种设置,其中每个节点负责根据其传入边缘上的权重在其传出边缘上分配权重。我们确定,只要描述组件之间的通信链接的(通常为定向的)图是牢固连接的,则每个提出的矩阵缩放算法都允许系统组件以分布式方式渐近地分配包括原始图元的权重随机矩阵。我们还显示,通过执行使用随时间变化的权重的线性迭代,节点可以渐近地达到平均共识(因为它们在所选矩阵缩放算法的每次迭代结束时产生)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号