首页> 外文期刊>Automatic Control, IEEE Transactions on >Topology Identification of Directed Dynamical Networks via Power Spectral Analysis
【24h】

Topology Identification of Directed Dynamical Networks via Power Spectral Analysis

机译:基于功率谱分析的有向动态网络拓扑识别

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of identifying the topology of an unknown weighted, directed network of LTI systems stimulated by wide-sense stationary noises of unknown power spectral densities. We propose several reconstruction algorithms by measuring the cross-power spectral densities of the network response to the input noises. The measurements are based on a series of node-knockout experiments where at each round the knocked out node broadcasts zero state without being eliminated from the network. Our first algorithm reconstructs the Boolean structure (i.e., existence and directions of links) of a directed network from a series of dynamical responses. Moreover, we propose a second algorithm to recover the exact structure of the network (including edge weights), as well as the power spectral density of the input noises, when an eigenvalue-eigenvector pair of the connectivity matrix is known (for example, Laplacian connectivity matrices). Finally, for the particular cases of nonreciprocal networks (i.e., networks with no directed edges pointing in opposite directions) and undirected networks, we propose specialized algorithms that result in a lower computational cost.
机译:我们解决了一个问题,即识别未知功率谱密度的广义平稳噪声所激发的未知加权,定向的LTI系统定向网络的拓扑结构。通过测量网络对输入噪声的交叉功率谱密度,我们提出了几种重构算法。这些测量基于一系列的节点剔除实验,其中,在每一轮中,剔除的节点广播零状态而不会从网络中消除。我们的第一个算法根据一系列动态响应来重构有向网络的布尔结构(即链路的存在和方向)。此外,当已知连通性矩阵的特征值-特征向量对(例如,拉普拉斯算子)时,我们提出了第二种算法来恢复网络的精确结构(包括边缘权重)以及输入噪声的功率谱密度。连接矩阵)。最后,对于不可逆网络(即无指向相反方向的有向边的网络)和无向网络的特殊情况,我们提出了可降低计算成本的专用算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号