首页> 外文期刊>IEEE Transactions on Automatic Control >Simultaneous Identification and Stabilization of Nonlinearly Parameterized Discrete-Time Systems by Nonlinear Least Squares Algorithm
【24h】

Simultaneous Identification and Stabilization of Nonlinearly Parameterized Discrete-Time Systems by Nonlinear Least Squares Algorithm

机译:非线性最小二乘算法同时识别和稳定非线性参数离散系统

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the challenging problem of designing an adaptive feedback strategy for simultaneous identification and stabilization for a class of nonlinearly parameterized uncertain systems in discrete time. The Nonlinear Least Squares (NLS) algorithm is applied to estimate the unknown parameters, and it turns out to be the standard Least Squares (LS) algorithm whenever the model is linearly parameterized. Based on this algorithm, both the strong consistency of the estimator and the global stability of the system are achieved with the output feedback design for the scalar-parameter case.
机译:本文解决了一个挑战性的问题,即为离散时间的一类非线性参数化不确定系统设计一种同时识别和稳定化的自适应反馈策略。非线性最小二乘(NLS)算法用于估计未知参数,并且只要模型被线性参数化,它就成为标准的最小二乘(LS)算法。基于该算法,通过标量参数情况下的输出反馈设计,既可以实现估计的强一致性,又可以实现系统的整体稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号