首页> 外文期刊>IEEE Transactions on Automatic Control >Asynchronous Gossip-Based Random Projection Algorithms Over Networks
【24h】

Asynchronous Gossip-Based Random Projection Algorithms Over Networks

机译:网络上基于异步八卦的随机投影算法

获取原文
获取原文并翻译 | 示例

摘要

We consider a distributed constrained convex optimization problem over a multi-agent (no central coordinator) network. We propose a completely decentralized and asynchronous gossip-based random projection (GRP) algorithm that solves the distributed problem using only local communications and computations. We analyze the convergence properties of the algorithm for a diminishing and a constant stepsize which are uncoordinated among agents. For a diminishing stepsize, we prove that the iterates of all agents converge to the same optimal point with probability 1. For a constant stepsize, we establish an error bound on the expected distance from the iterates of the algorithm to the optimal point. We also provide simulation results on a distributed robust model predictive control problem.
机译:我们考虑了多主体(无中央协调器)网络上的分布式约束凸优化问题。我们提出了一种完全分散且基于异步八卦的随机投影(GRP)算法,该算法仅使用本地通信和计算即可解决分布式问题。我们分析了在代理之间不协调的递减和恒定步长的算法的收敛特性。对于递减的步长,我们证明所有代理的迭代都以概率1收敛到同一最优点。对于恒定的步长,我们在从算法的迭代到最优点的预期距离上建立误差界限。我们还提供了关于分布式鲁棒模型预测控制问题的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号