首页> 外文期刊>Automatic Control, IEEE Transactions on >Randomized Greedy Sensor Selection: Leveraging Weak Submodularity
【24h】

Randomized Greedy Sensor Selection: Leveraging Weak Submodularity

机译:随机贪婪传感器选择:利用弱潜水线

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of estimating a random process from the observations collected by a network of sensors that operate under resource constraints. When the dynamics of the process and sensor observations are described by a state-space model and the resource are unlimited, the conventional Kalman filter provides the minimum mean square error (MMSE) estimates. However, at any given time, restrictions on the available communications bandwidth and computational capabilities and/or power impose a limitation on the number of network nodes, whose observations can be used to compute the estimates. We formulate the problem of selecting the most informative subset of the sensors as a combinatorial problem of maximizing a monotone set function under a uniform matroid constraint. For the MMSE estimation criterion, we show that the maximum elementwise curvature of the objective function satisfies a certain upper-bound constraint and is, therefore, weak submodular. Building upon the work of Mirzasoleiman et al. on submodular maximization, we develop an efficient randomized greedy algorithm for sensor selection and establish guarantees on the estimator's performance in this setting. Extensive simulation results demonstrate the efficacy of the randomized greedy algorithm compared to state-of-the-art greedy and semidefinite programming relaxation methods.
机译:我们研究了从由资源限制运行的传感器网络收集的观察结果估算随机过程的问题。当通过状态空间模型描述过程和传感器观察的动态并且资源是无限的,传统的卡尔曼滤波器提供最小均方误差(MMSE)估计。然而,在任何给定的时间,对可用通信带宽和计算能力和/或功率的限制对网络节点数量的限制施加了限制,其观察可以用于计算估计。我们制定选择传感器最佳信息的问题,作为最大化统一Matroid约束下单调集功能的组合问题。对于MMSE估计标准,我们示出了目标函数的最大元素曲率满足某个上限约束,因此弱子模块。建立在Mirzasoleiman的工作 et al。在子模型最大化上,我们开发了一个有效的随机贪婪算法,用于传感器选择,并在此设置中建立保证。广泛的仿真结果表明,随机贪婪算法与最先进的贪婪和半纤维编程放松方法相比的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号