首页> 外文期刊>Automatic Control, IEEE Transactions on >Minimum Variance Distortionless Response Estimators for Linear Discrete State-Space Models
【24h】

Minimum Variance Distortionless Response Estimators for Linear Discrete State-Space Models

机译:线性离散状态空间模型的最小方差无失真响应估计器

获取原文
获取原文并翻译 | 示例

摘要

For linear discrete state-space models, under certain conditions, the linear least-mean-squares filter estimate has a convenient recursive predictor/corrector format, aka the Kalman filter. The purpose of this paper is to show that the linear minimum variance distortionless response (MVDR) filter shares exactly the same recursion, except for the initialization which is based on a weighted least-squares estimator. If the MVDR filter is suboptimal in mean-squared error sense, it is an infinite impulse response distortionless filter (a deconvolver) which does not depend on the prior knowledge (first- and second-order statistics) on the initial state. In other words, the MVDR filter can be pre-computed and its behaviour can be assessed in advance independently of the prior knowledge on the initial state.
机译:对于线性离散状态空间模型,在某些条件下,线性最小均方滤波器估计具有便利的递归预测器/校正器格式,也称为卡尔曼滤波器。本文的目的是证明线性最小方差无失真响应(MVDR)滤波器具有完全相同的递归,除了基于加权最小二乘估计量的初始化之外。如果MVDR滤波器在均方误差意义上不是次优的,则它是无限脉冲响应无失真滤波器(解卷积器),它不依赖于初始状态的先验知识(一阶和二阶统计量)。换句话说,可以预先计算MVDR滤波器,并且可以独立于初始状态的先验知识而预先评估其行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号