首页> 外文期刊>IEEE Transactions on Automatic Control >Robust Dynamic Average Consensus Algorithms
【24h】

Robust Dynamic Average Consensus Algorithms

机译:鲁棒的动态平均共识算法

获取原文
获取原文并翻译 | 示例

摘要

This technical note considers the dynamic average consensus problem, where a group of networked agents are required to estimate the average of their time-varying reference signals. Almost all existing solutions to this problem require a specific initialization of the estimator states, and such constraints render the algorithms vulnerable to network disruptions. Here, we present three robust algorithms that do not entail any initialization criteria. Furthermore, the proposed algorithms do not rely on the full knowledge of the dynamics generating the reference signals nor assume access to its time derivatives. Two of the proposed algorithms focus on undirected networks and make use of an adaptive scheme that removes the explicit dependence of the algorithm on any upper bounds on the reference signals or its time derivatives. The third algorithm presented here provides a robust solution to the dynamic average consensus problem on directed networks. Compared to the existing algorithms for directed networks, the proposed algorithm guarantees an arbitrarily small steady-state error bound that is independent of any bounds on the reference signals or its time derivatives. The current formulation allows each agent to select its own performance criteria, and the algorithm parameters are distributedly selected such that the most stringent requirement among them is satisfied. A performance comparison of the proposed approach to existing algorithms is presented.
机译:本技术说明考虑了动态平均共识问题,其中需要一组网络代理来估计其时变参考信号的平均值。解决该问题的几乎所有现有解决方案都需要对估计器状态进行特定的初始化,并且此类约束使算法容易受到网络中断的影响。在这里,我们提出了三种健壮的算法,不需要任何初始化标准。此外,所提出的算法不依赖于生成参考信号的动力学的全部知识,也不假设访问其时间导数。所提出的两种算法专注于无向网络,并利用一种自适应方案,该方案消除了算法对参考信号或其时间导数的任何上限的明确依赖。此处提出的第三种算法为有向网络上的动态平均共识问题提供了一种鲁棒的解决方案。与有向网络的现有算法相比,所提出的算法可保证任意小的稳态误差范围,该范围独立于参考信号或其时间导数的任何范围。当前的公式允许每个代理选择其自己的性能标准,并且分布式选择算法参数,从而满足其中最严格的要求。提出的方法与现有算法的性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号