...
首页> 外文期刊>IEEE Transactions on Automatic Control >Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects via Poincaré Analysis
【24h】

Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects via Poincaré Analysis

机译:脉冲效应的Poincaré分析系统的周期轨道输入状态稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we investigate the relation between robustness of periodic orbits exhibited by systems with impulse effects and robustness of their corresponding Poincar maps. In particular, we prove that input-to-state stability (ISS) of a periodic orbit under external excitation in both continuous and discrete time is equivalent to ISS of the corresponding zero-input fixed point of the associated forced Poincar map. This result extends the classical Poincar analysis for asymptotic stability of periodic solutions to establish orbital ISS of such solutions under external excitation. In our proof, we define the forced Poincar map, and use it to construct ISS estimates for the periodic orbit in terms of ISS estimates of this map under mild assumptions on the input signals. As a consequence of the availability of these estimates, the equivalence between exponential stability (ES) of the fixed point of the zero-input (unforced) Poincar map and the ES of the corresponding orbit is recovered. The results can be applied naturally to study the robustness of periodic orbits of continuous-time systems as well. Although our motivation for extending classical Poincar analysis to address ISS stems from the need to design robust controllers for limit-cycle walking and running robots, the results are applicable to a much broader class of systems that exhibit periodic solutions.
机译:在本文中,我们研究了具有脉冲效应的系统所表现出的周期性轨道的鲁棒性与其对应的庞加尔图的鲁棒性之间的关系。特别是,我们证明了在外部和外部激励下,连续和离散时间内周期性轨道的输入状态稳定性(ISS)等于关联的强迫庞加莱图的相应零输入固定点的ISS。此结果扩展了经典Poincar分析的周期解的渐近稳定性,从而在外部激励下建立了此类解的轨道ISS。在我们的证明中,我们定义了强迫庞加莱图,并使用它在输入信号的温和假设下,根据该图的ISS估计来构造周期性轨道的ISS估计。由于这些估计的可获得性,恢复了零输入(非强迫)庞加莱图的固定点的指数稳定性(ES)与相应轨道的ES之间的等价性。结果也可以自然地用于研究连续时间系统周期轨道的鲁棒性。尽管我们扩展经典Poincar分析以解决ISS的动机源于对极限骑行和跑步机器人设计鲁棒控制器的需求,但其结果适用于展示周期性解决方案的更广泛的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号