首页> 外文期刊>IEEE Transactions on Automatic Control >A New Randomized Block-Coordinate Primal-Dual Proximal Algorithm for Distributed Optimization
【24h】

A New Randomized Block-Coordinate Primal-Dual Proximal Algorithm for Distributed Optimization

机译:分布优化的一种新的随机块坐标原始对偶近邻算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes Triangularly Preconditioned Primal- Dual algorithm, a new primal-dual algorithm for minimizing the sum of a Lipschitz-differentiable convex function and two possibly nonsmooth convex functions, one of which is composed with a linear mapping. We devise a randomized block-coordinate ( BC) version of the algorithm which converges under the same stepsize conditions as the full algorithm. It is shown that both the original as well as the BC scheme feature linear convergence rate when the functions involved are either piecewise linear-quadratic, or when they satisfy a certain quadratic growth condition (which is weaker than strong convexity). Moreover, we apply the developed algorithms to the problem of multiagent optimization on a graph, thus obtaining novel synchronous and asynchronous distributed methods. The proposed algorithms are fully distributed in the sense that the updates and the stepsizes of each agent only depend on local information. In fact, no prior global coordination is required. Finally, we showcase an application of our algorithm in distributed formation control.
机译:本文提出了三角预处理的本原对偶算法,这是一种新的本原对偶算法,用于最小化Lipschitz可微凸函数和两个可能不光滑的凸函数之和,其中一个由线性映射组成。我们设计了一种算法的随机块坐标(BC)版本,该版本在与完整算法相同的步长条件下收敛。结果表明,当所涉及的函数要么是分段线性二次函数,要么满足一定的二次增长条件(弱于强凸性)时,原始方案和BC方案都具有线性收敛速度。此外,我们将开发的算法应用于图上的多主体优化问题,从而获得了新颖的同步和异步分布式方法。在每个代理程序的更新和步长仅取决于本地信息的意义上,所提出的算法是完全分布的。实际上,不需要事先进行全球协调。最后,我们展示了我们的算法在分布式编队控制中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号