首页> 外文期刊>Automatic Control, IEEE Transactions on >Automatic Pan–Tilt Camera Control for Learning Dirichlet Process Gaussian Process (DPGP) Mixture Models of Multiple Moving Targets
【24h】

Automatic Pan–Tilt Camera Control for Learning Dirichlet Process Gaussian Process (DPGP) Mixture Models of Multiple Moving Targets

机译:用于学习多个移动目标的Dirichlet过程高斯过程(DPGP)混合模型的自动全倾斜摄像机控制

获取原文
获取原文并翻译 | 示例

摘要

Information value functions based on the Kullback–Leibler (KL) divergence have been shown the most effective for planning sensor measurements by means of greedy strategies. The problem of optimizing information value over a finite time horizon to date has been considered computationally intractable and, as proven here, is$ext{NP}$-hard. This paper presents new information value functions that are additive and can be optimized efficiently over time by deriving a lower bound of the KL divergence. Combined with a convex approximation of the sensor field of view, these information value functions can be used to obtain real-time sensor control by a lexicographic approach, and to derive performance guarantees. Numerical and experimental results on pedestrian data show that the lexicographic control system significantly improves target modeling and prediction performance when compared to existing algorithms.
机译:事实证明,基于贪婪策略,基于Kullback-Leibler(KL)散度的信息价值函数最有效地计划了传感器测量。迄今为止,在有限的时间范围内优化信息价值的问题已被认为在计算上是棘手的,并且如此处所证明的,它是 n $ text {NP} $ n-hard。本文提出了新的信息值函数,这些函数是可加的,并且可以通过得出KL散度的下限来随时间有效地优化。结合传感器视场的凸近似值,这些信息值函数可用于通过字典法获得实时传感器控制,并获得性能保证。对行人数据的数值和实验结果表明,与现有算法相比,词典控制系统显着改善了目标建模和预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号