首页> 外文期刊>Automated software engineering >Exploiting ensemble techniques for automatic virtual machine clustering in cloud systems
【24h】

Exploiting ensemble techniques for automatic virtual machine clustering in cloud systems

机译:利用集成技术在云系统中自动进行虚拟机集群

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing has recently emerged as a new paradigm to provide computing services through large-size data centers where customers may run their applications in a virtualized environment. The advantages of cloud in terms of flexibility and economy encourage many enterprises to migrate from local data centers to cloud platforms, thus contributing to the success of such infrastructures. However, as size and complexity of cloud infrastructures grow, scalability issues arise in monitoring and management processes. Scalability issues are exacerbated because available solutions typically consider each virtual machine (VM) as a black box with independent characteristics, which is monitored at a fine-grained granularity level for management purposes, thus generating huge amounts of data to handle. We claim that scalability issues can be addressed by leveraging the similarity between VMs in terms of resource usage patterns. In this paper, we propose an automated methodology to cluster similar VMs starting from their resource usage information, assuming no knowledge of the software executed on them. This is an innovative methodology that combines the Bhattacharyya distance and ensemble techniques to provide a stable evaluation of similarity between probability distributions of multiple VM resource usage, considering both system- and network-related data. We evaluate the methodology through a set of experiments on data coming from an enterprise data center. We show that our proposal achieves high and stable performance in automatic VMs clustering, with a significant reduction in the amount of data collected which allows to lighten the monitoring requirements of a cloud data center.
机译:云计算最近成为一种新的范例,可以通过大型数据中心提供计算服务,客户可以在其中在虚拟化环境中运行其应用程序。云在灵活性和经济性方面的优势鼓励许多企业从本地数据中心迁移到云平台,从而为此类基础架构的成功做出了贡献。但是,随着云基础架构的规模和复杂性的增长,在监视和管理流程中会出现可伸缩性问题。由于可用的解决方案通常会将每个虚拟机(VM)视为具有独立特征的黑匣子,因此,可扩展性问题会更加恶化,出于管理目的,将对其进行细粒度的监视,从而生成大量数据进行处理。我们声称,可通过在资源使用模式方面利用VM之间的相似性来解决可伸缩性问题。在本文中,我们提出了一种自动化的方法,可以基于类似的VM的资源使用信息来对其进行聚类,假设他们不了解在其上执行的软件。这是一种创新的方法,结合了Bhattacharyya距离和集成技术,可以在考虑与系统和网络相关的数据的情况下,对多个VM资源使用的概率分布之间的相似性进行稳定的评估。我们通过对来自企业数据中心的数据进行一组实验来评估该方法。我们表明,我们的建议在自动VM群集中实现了较高且稳定的性能,同时大大减少了所收集的数据量,从而减轻了云数据中心的监控需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号