首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Distributed Feature Representations for Dependency Parsing
【24h】

Distributed Feature Representations for Dependency Parsing

机译:依赖关系分析的分布式功能表示

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to automatically learning distributed representations for features to address the feature sparseness problem for dependency parsing. Borrowing terminologies from word embeddings, we call the feature representation feature embeddings. In our approach, the feature embeddings are inferred from large amounts of auto-parsed data. First, the sentences in raw data are parsed by a baseline system and we obtain dependency trees. Then, we represent each model feature using the surrounding features on the dependency trees. Based on the representation of surrounding context, we proposed two learning methods to infer feature embeddings. Finally, based on feature embeddings, we present a set of new features for graph-based dependency parsing models. The new parsers can not only make full use of well-established hand-designed features but also benefit from the hidden-class representations of features. Experiments on the standard Chinese and English data sets show that the new parser achieves significant performance improvements over a strong baseline.
机译:本文提出了一种自动学习特征的分布式表示的方法,以解决依赖关系解析的特征稀疏问题。从词嵌入中借用术语,我们称特征表示特征嵌入。在我们的方法中,特征嵌入是从大量自动分析的数据推断出来的。首先,原始数据中的句子由基线系统解析,我们获得依赖树。然后,我们使用依赖关系树上的周围特征来表示每个模型特征。基于周围环境的表示,我们提出了两种学习方法来推断特征嵌入。最后,基于特征嵌入,我们为基于图的依赖关系解析模型提供了一组新特征。新的解析器不仅可以充分利用完善的手工设计功能,还可以从功能的隐藏类表示中受益。在标准中文和英文数据集上进行的实验表明,新的解析器在强大的基线上实现了显着的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号