首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Blind Separation of Audio Mixtures Through Nonnegative Tensor Factorization of Modulation Spectrograms
【24h】

Blind Separation of Audio Mixtures Through Nonnegative Tensor Factorization of Modulation Spectrograms

机译:通过调制频谱图的非负张量分解来盲分离音频混合物

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm for unsupervised single-channel source separation of audio mixtures. The approach specifically addresses the challenging case of separation where no training data are available. By representing mixtures in the modulation spectrogram (MS) domain, we exploit underlying similarities in patterns present across frequency. A three-dimensional tensor factorization is able to take advantage of these redundant patterns, and is used to separate a mixture into an approximated sum of components by minimizing a divergence cost. Furthermore, we show that the basic tensor factorization can be extended with convolution in time being used to improve separation results and provide update rules to learn components in such a manner. Following factorization, sources are reconstructed in the audio domain from estimated components using a novel approach based on reconstruction masks that are learned using MS activations, and then applied to a mixture spectrogram. We demonstrate that the proposed method produces superior separation performance to a spectrally based nonnegative matrix factorization approach, in terms of source-to-distortion ratio. We also compare separation with the perceptually motivated interference-related perceptual score metric and identify cases with higher performance.
机译:本文提出了一种无监督的混合音频单通道源分离算法。该方法专门解决了没有培训数据的分离难题。通过在调制频谱图(MS)域中表示混合物,我们利用了整个频率范围内模式的潜在相似性。三维张量分解能够利用这些冗余模式,并通过最小化分散成本来将混合物分离为近似的组分总和。此外,我们表明基本张量分解可以随着时间的卷积而扩展,以用于改善分离结果并提供更新规则以这种方式学习组件。经过因子分解后,可使用一种新颖的方法,根据基于使用MS激活学习到的重建掩码的方法,在音频域中从估计的分量中重建源,然后将其应用于混合频谱图。我们证明,从源失真比的角度出发,所提出的方法与基于频谱的非负矩阵分解方法相比,能够产生更好的分离性能。我们还将分离与感知动机干扰相关感知评分指标进行比较,并确定具有较高性能的案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号