首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Auditory Model-Based Dynamic Compression Controlled by Subband Instantaneous Frequency and Speech Presence Probability Estimates
【24h】

Auditory Model-Based Dynamic Compression Controlled by Subband Instantaneous Frequency and Speech Presence Probability Estimates

机译:子带瞬时频率和语音存在概率估计控制的基于听觉模型的动态压缩

获取原文
获取原文并翻译 | 示例

摘要

Sensorineural hearing loss typically results in elevated thresholds and steepened loudness growth significantly conditioned by a damage of outer hair cells (OHC). In hearing aids, amplification and dynamic compression aim at widening the limited available dynamic range. However, speech perception particularly in complex acoustic scenes often remains difficult. Here, a physiologically motivated, fast acting, model-based dynamic compression algorithm (MDC) is introduced which aims at restoring the behaviorally estimated basilar membrane input–output (BM I/O) function in normal-hearing listeners. A system-specific gain prescription rule is suggested, based on the same model BM I/O function and a behavioral estimate of the individual OHC loss. Cochlear off-frequency component suppression is mimicked using an instantaneous frequency (IF) estimate. Increased loudness as a consequence of widened filters in the impaired system is considered in a further compensation stage. In an extended version, a subband estimate of the speech presence probability (MDC+SPP) additionally provides speech-selective amplification in stationary noise. Instrumental evaluation revealed that the IF control enhances the spectral contrast of vowels and benefits in quality predictions at higher signal-to-noise ratios (SNRs) were observed. Compared with a conventional multiband dynamic compressor, MDC achieved objective quality and intelligibility benefits for a competing talker at lower SNRs. MDC+SPP outperformed the conventional compressor in the quality predictions and reached comparable instrumental speech intelligibility as achieved with linear amplification. The proposed algorithm provides a first promising basis for auditory model-based compression with signal-type- and bandwidth-dependent gains.
机译:感觉神经性听力损失通常会导致阈值升高和响度增长陡峭,这主要是由外部毛细胞(OHC)损坏引起的。在助听器中,放大和动态压缩旨在扩大有限的可用动态范围。但是,语音感知尤其是在复杂的声学场景中通常仍然很困难。在这里,引入了一种基于生理的,快速作用的,基于模型的动态压缩算法(MDC),该算法旨在恢复正常听力的听众的行为估计的基底膜输入输出(BM I / O)功能。根据相同的模型BM I / O功能和单个OHC损失的行为估计,建议使用系统特定的增益处方规则。使用瞬时频率(IF)估算来模拟耳蜗的非频率分量抑制。在进一步的补偿阶段中,可以考虑由于受损系统中的滤波器变宽而导致响度增加。在扩展版本中,语音存在概率(MDC + SPP)的子带估计还提供了固定噪声中的语音选择性放大。仪器评估表明,中频控制增强了元音的频谱对比度,并在较高的信噪比(SNR)下观察到了质量预测的好处。与传统的多频带动态压缩器相比,MDC在较低的SNR情况下为竞争的通话器提供了客观的质量和清晰度优势。 MDC + SPP在质量预测方面胜过传统压缩器,并且达到了线性放大所达到的可比较的工具语音清晰度。所提出的算法为基于听觉模型的压缩以及信号类型和带宽相关的增益提供了第一个有希望的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号