首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Abstractive Cross-Language Summarization via Translation Model Enhanced Predicate Argument Structure Fusing
【24h】

Abstractive Cross-Language Summarization via Translation Model Enhanced Predicate Argument Structure Fusing

机译:通过翻译模型增强的谓词参数结构融合进行抽象的跨语言汇总

获取原文
获取原文并翻译 | 示例

摘要

Cross-language multidocument summarization is the task to generate a summary in a target language (e.g., Chinese) from a collection of documents in a different source language (e.g., English). Previous methods such as the extractive and compressive algorithms focus only on single sentence selection and compression, which cannot make full use of the similar sentences containing complementary information. Furthermore, the translation model knowledge is not fully explored in previous approaches. To address these two problems, we propose in this paper an abstractive cross-language summarization framework. First, the source language documents are translated into target language with a machine translation system. Then, the method constructs a pool of bilingual concepts and facts represented by the bilingual elements of the source-side predicate-argument structures (PAS) and their target-side counterparts. Finally, new summary sentences are produced by fusing bilingual PAS elements with the integer linear programming algorithm to maximize both of the salience and translation quality of the PAS elements. The experimental results on English-to-Chinese cross-language summarization demonstrate that our proposed method outperforms the state-of-the-art extractive systems in both automatic and manual evaluations.
机译:跨语言多文档摘要是一项任务,可以从目标语言(例如中文)中以另一种源语言(例如英文)从文档集中生成摘要。诸如提取和压缩算法之类的先前方法仅专注于单个句子的选择和压缩,这不能充分利用包含补充信息的相似句子。此外,在以前的方法中还没有完全探索翻译模型知识。为了解决这两个问题,我们在本文中提出了一个抽象的跨语言摘要框架。首先,使用机器翻译系统将源语言文档翻译成目标语言。然后,该方法构造了由源侧谓词参数结构(PAS)的双语元素及其目标侧对应物表示的双语概念和事实的集合。最后,通过将双语PAS元素与整数线性规划算法融合在一起以使PAS元素的显着性和翻译质量最大化,从而产生新的摘要语句。在英语到中文跨语言摘要的实验结果表明,我们提出的方法在自动和手动评估方面都优于最新的提取系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号