首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Semi-Supervised Acoustic Model Training by Discriminative Data Selection From Multiple ASR Systems’ Hypotheses
【24h】

Semi-Supervised Acoustic Model Training by Discriminative Data Selection From Multiple ASR Systems’ Hypotheses

机译:通过从多个ASR系统的假设中进行区分数据选择来半监督声学模型训练

获取原文
获取原文并翻译 | 示例

摘要

While the performance of ASR systems depends on the size of the training data, it is very costly to prepare accurate and faithful transcripts. In this paper, we investigate a semisupervised training scheme, which takes the advantage of huge quantities of unlabeled video lecture archive, particularly for the deep neural network (DNN) acoustic model. In the proposed method, we obtain ASR hypotheses by complementary GMM- and DNN-based ASR systems. Then, a set of CRF-based classifiers is trained to select the correct hypotheses and verify the selected data. The proposed hypothesis combination shows higher quality compared with the conventional system combination method (ROVER). Moreover, compared with the conventional data selection based on confidence measure score, our method is demonstrated more effective for filtering usable data. Significant improvement in the ASR accuracy is achieved over the baseline system and in comparison with the models trained with the conventional system combination and data selection methods.
机译:虽然ASR系统的性能取决于训练数据的大小,但准备准确,忠实的笔录非常昂贵。在本文中,我们研究了一种半监督的训练方案,该方案利用了大量未标记视频讲座档案的优势,特别是对于深度神经网络(DNN)声学模型。在提出的方法中,我们通过基于GMM和DNN的互补ASR系统获得ASR假设。然后,训练一组基于CRF的分类器以选择正确的假设并验证所选数据。与常规系统组合方法(ROVER)相比,提出的假设组合显示出更高的质量。此外,与传统的基于置信度评分的数据选择相比,我们的方法被证明对过滤可用数据更有效。与使用常规系统组合和数据选择方法训练的模型相比,整个基线系统的ASR准确性均得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号