首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Using Eigenvoices and Nearest-Neighbors in HMM-Based Cross-Lingual Speaker Adaptation With Limited Data
【24h】

Using Eigenvoices and Nearest-Neighbors in HMM-Based Cross-Lingual Speaker Adaptation With Limited Data

机译:在有限数据的基于HMM的跨语言说话者适应中使用特征语音和最近邻

获取原文
获取原文并翻译 | 示例

摘要

Cross-lingual speaker adaptation for speech synthesis has many applications, such as use in speech-to-speech translation systems. Here, we focus on cross-lingual adaptation for statistical speech synthesis systems using limited adaptation data. To that end, we propose two eigenvoice adaptation approaches exploiting a bilingual Turkish–English speech database that we collected. In one approach, eigenvoice weights extracted using Turkish adaptation data and Turkish voice models are transformed into the eigenvoice weights for the English voice models using linear regression. Weighting the samples depending on the distance of reference speakers to target speakers during linear regression was found to improve the performance. Moreover, importance weighting the elements of the eigenvectors during regression further improved the performance. The second approach proposed here is speaker-specific state-mapping, which performed significantly better than the baseline state-mapping algorithm both in objective and subjective tests. Performance of the proposed state mapping algorithm was further improved when it was used with the intralingual eigenvoice approach instead of the linear-regression based algorithms used in the baseline system.
机译:用于语音合成的跨语言说话者适应具有许多应用,例如在语音到语音翻译系统中使用。在这里,我们专注于使用有限的适应数据的统计语音合成系统的跨语言适应。为此,我们提出了两种利用我们收集的土耳其语-英语双语语音数据库的特征语音适应方法。在一种方法中,使用线性回归将使用土耳其语自适应数据和土耳其语语音模型提取的特征语音权重转换为英语语音模型的特征语音权重。发现在线性回归期间根据参考说话者与目标说话者的距离对样本进行加权可以改善性能。此外,在回归过程中对特征向量元素进行加权的重要性进一步提高了性能。这里提出的第二种方法是特定于说话者的状态映射,在客观和主观测试中,其性能均明显优于基线状态映射算法。当与舌内特征语音方法代替基线系统中使用的基于线性回归的算法一起使用时,所提出的状态映射算法的性能得到了进一步改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号