首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Cross-Language Neural Dialog State Tracker for Large Ontologies Using Hierarchical Attention
【24h】

Cross-Language Neural Dialog State Tracker for Large Ontologies Using Hierarchical Attention

机译:使用分层注意的大型本体跨语言神经对话状态跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Dialog state tracking, which refers to identifying the user intent from utterances, is one of the most important tasks in dialog management. In this paper, we present our dialog state tracker developed for the fifth dialog state tracking challenge, which focused on cross-language adaptation using a very scarce machine-translated training data when compared to the size of the ontology. Our dialog state tracker is based on the bi-directional long short-term memory network with a hierarchical attention mechanism in order to spot important words in user utterances. The user intent is predicted by finding the closest keyword in the ontology to the attention-weighted word vector. With the suggested methodology, our tracker can overcome various difficulties due to the scarce training data that existing machine learning-based trackers had, such as predicting user intents they have not seen before. We show that our tracker outperforms other trackers submitted to the challenge with respect to most of the performance measures.
机译:对话状态跟踪是指从对话中识别用户意图,这是对话框管理中最重要的任务之一。在本文中,我们介绍了为第五次对话状态跟踪挑战而开发的对话状态跟踪器,该对话状态跟踪器着重于跨语言适应,与本体的大小相比,使用了非常少的机器翻译训练数据。我们的对话状态跟踪器基于双向的长期短期记忆网络,具有分层的关注机制,以便发现用户话语中的重要单词。通过在本体中找到与注意力加权词向量最接近的关键字来预测用户意图。使用建议的方法,由于现有的基于机器学习的跟踪器缺乏培训数据,例如预测他们以前从未见过的用户意图,我们的跟踪器可以克服各种困难。我们证明,在大多数绩效指标方面,我们的跟踪器的性能要优于其他接受挑战的跟踪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号