首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Semisupervised Autoencoders for Speech Emotion Recognition
【24h】

Semisupervised Autoencoders for Speech Emotion Recognition

机译:半监督自动编码器,用于语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

Despite the widespread use of supervised learning methods for speech emotion recognition, they are severely restricted due to the lack of sufficient amount of labelled speech data for the training. Considering the wide availability of unlabelled speech data, therefore, this paper proposes semisupervised autoencoders to improve speech emotion recognition. The aim is to reap the benefit from the combination of the labelled data and unlabelled data. The proposed model extends a popular unsupervised autoencoder by carefully adjoining a supervised learning objective. We extensively evaluate the proposed model on the INTERSPEECH 2009 Emotion Challenge database and other four public databases in different scenarios. Experimental results demonstrate that the proposed model achieves state-of-the-art performance with a very small number of labelled data on the challenge task and other tasks, and significantly outperforms other alternative methods.
机译:尽管有监督学习方法广泛用于语音情感识别,但是由于缺少足够数量的用于训练的标记语音数据,它们受到严格限制。考虑到未标记语音数据的广泛可用性,因此,本文提出了半监督自动编码器以改善语音情感识别。目的是从标记数据和未标记数据的组合中获得收益。拟议的模型通过仔细地加入监督学习目标,扩展了一种流行的无监督自动编码器。我们在不同情况下,在INTERSPEECH 2009情感挑战数据库和其他四个公共数据库上广泛评估了提议的模型。实验结果表明,所提出的模型以极少量的有关挑战任务和其他任务的标记数据实现了最先进的性能,并且明显优于其他替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号